Abstract:Small-sized unmanned surface vehicles (USV) are coastal water devices with a broad range of applications such as environmental control and surveillance. A crucial capability for autonomous operation is obstacle detection for timely reaction and collision avoidance, which has been recently explored in the context of camera-based visual scene interpretation. Owing to curated datasets, substantial advances in scene interpretation have been made in a related field of unmanned ground vehicles. However, the current maritime datasets do not adequately capture the complexity of real-world USV scenes and the evaluation protocols are not standardised, which makes cross-paper comparison of different methods difficult and hiders the progress. To address these issues, we introduce a new obstacle detection benchmark MODS, which considers two major perception tasks: maritime object detection and the more general maritime obstacle segmentation. We present a new diverse maritime evaluation dataset containing approximately 81k stereo images synchronized with an on-board IMU, with over 60k objects annotated. We propose a new obstacle segmentation performance evaluation protocol that reflects the detection accuracy in a way meaningful for practical USV navigation. Seventeen recent state-of-the-art object detection and obstacle segmentation methods are evaluated using the proposed protocol, creating a benchmark to facilitate development of the field.
Abstract:Obstacle detection by semantic segmentation shows a great promise for autonomous navigation in unmanned surface vehicles (USV). However, existing methods suffer from poor estimation of the water edge in the presence of visual ambiguities, poor detection of small obstacles and high false-positive rate on water reflections and wakes. We propose a new deep encoder-decoder architecture, a water-obstacle separation and refinement network (WaSR), to address these issues. Detection and water edge accuracy are improved by a novel decoder that gradually fuses inertial information from IMU with the visual features from the encoder. In addition, a novel loss function is designed to increase the separation between water and obstacle features early on in the network. Subsequently, the capacity of the remaining layers in the decoder is better utilised, leading to a significant reduction in false positives and increased true positives. Experimental results show that WaSR outperforms the current state-of-the-art by a large margin, yielding a 14% increase in F-measure over the second-best method.
Abstract:A new obstacle detection algorithm for unmanned surface vehicles (USVs) is presented. A state-of-the-art graphical model for semantic segmentation is extended to incorporate boat pitch and roll measurements from the on-board inertial measurement unit (IMU), and a stereo verification algorithm that consolidates tentative detections obtained from the segmentation is proposed. The IMU readings are used to estimate the location of horizon line in the image, which automatically adjusts the priors in the probabilistic semantic segmentation model. We derive the equations for projecting the horizon into images, propose an efficient optimization algorithm for the extended graphical model, and offer a practical IMU-camera-USV calibration procedure. Using an USV equipped with multiple synchronized sensors, we captured a new challenging multi-modal dataset, and annotated its images with water edge and obstacles. Experimental results show that the proposed algorithm significantly outperforms the state of the art, with nearly 30% improvement in water-edge detection accuracy, an over 21% reduction of false positive rate, an almost 60% reduction of false negative rate, and an over 65% increase of true positive rate, while its Matlab implementation runs in real-time.