Abstract:We study the approximation capacity of deep ReLU recurrent neural networks (RNNs) and explore the convergence properties of nonparametric least squares regression using RNNs. We derive upper bounds on the approximation error of RNNs for H\"older smooth functions, in the sense that the output at each time step of an RNN can approximate a H\"older function that depends only on past and current information, termed a past-dependent function. This allows a carefully constructed RNN to simultaneously approximate a sequence of past-dependent H\"older functions. We apply these approximation results to derive non-asymptotic upper bounds for the prediction error of the empirical risk minimizer in regression problem. Our error bounds achieve minimax optimal rate under both exponentially $\beta$-mixing and i.i.d. data assumptions, improving upon existing ones. Our results provide statistical guarantees on the performance of RNNs.
Abstract:We present theoretical convergence guarantees for ODE-based generative models, specifically flow matching. We use a pre-trained autoencoder network to map high-dimensional original inputs to a low-dimensional latent space, where a transformer network is trained to predict the velocity field of the transformation from a standard normal distribution to the target latent distribution. Our error analysis demonstrates the effectiveness of this approach, showing that the distribution of samples generated via estimated ODE flow converges to the target distribution in the Wasserstein-2 distance under mild and practical assumptions. Furthermore, we show that arbitrary smooth functions can be effectively approximated by transformer networks with Lipschitz continuity, which may be of independent interest.