Abstract:Rainy weather will have a significant impact on the regular operation of the imaging system. Based on this premise, image rain removal has always been a popular branch of low-level visual tasks, especially methods using deep neural networks. However, most neural networks are but-branched, such as only using convolutional neural networks or Transformers, which is unfavourable for the multidimensional fusion of image features. In order to solve this problem, this paper proposes a dual-branch attention fusion network. Firstly, a two-branch network structure is proposed. Secondly, an attention fusion module is proposed to selectively fuse the features extracted by the two branches rather than simply adding them. Finally, complete ablation experiments and sufficient comparison experiments prove the rationality and effectiveness of the proposed method.
Abstract:Although Convolutional Neural Networks (CNN) have made good progress in image restoration, the intrinsic equivalence and locality of convolutions still constrain further improvements in image quality. Recent vision transformer and self-attention have achieved promising results on various computer vision tasks. However, directly utilizing Transformer for image restoration is a challenging task. In this paper, we introduce an effective hybrid architecture for sand image restoration tasks, which leverages local features from CNN and long-range dependencies captured by transformer to improve the results further. We propose an efficient hybrid structure for sand dust image restoration to solve the feature inconsistency issue between Transformer and CNN. The framework complements each representation by modulating features from the CNN-based and Transformer-based branches rather than simply adding or concatenating features. Experiments demonstrate that SandFormer achieves significant performance improvements in synthetic and real dust scenes compared to previous sand image restoration methods.