Abstract:A key problem when modeling signal integrity for passive filters and interconnects in IC packages is the need for multiple S-parameter measurements within a desired frequency band to obtain adequate resolution. These samples are often computationally expensive to obtain using electromagnetic (EM) field solvers. Therefore, a common approach is to select a small subset of the necessary samples and use an appropriate fitting mechanism to recreate a densely-sampled broadband representation. We present the first deep generative model-based approach to fit S-parameters from EM solvers using one-dimensional Deep Image Prior (DIP). DIP is a technique that optimizes the weights of a randomly-initialized convolutional neural network to fit a signal from noisy or under-determined measurements. We design a custom architecture and propose a novel regularization inspired by smoothing splines that penalizes discontinuous jumps. We experimentally compare DIP to publicly available and proprietary industrial implementations of Vector Fitting (VF), the industry-standard tool for fitting S-parameters. Relative to publicly available implementations of VF, our method shows superior performance on nearly all test examples using only 5-15% of the frequency samples. Our method is also competitive to proprietary VF tools and often outperforms them for challenging input instances.
Abstract:Design of printed circuit board (PCB) stack-up requires the consideration of characteristic impedance, insertion loss and crosstalk. As there are many parameters in a PCB stack-up design, the optimization of these parameters needs to be efficient and accurate. A less optimal stack-up would lead to expensive PCB material choices in high speed designs. In this paper, an efficient global optimization method using parallel and intelligent Bayesian optimization is proposed for the stripline design.