Abstract:Tech neck is a modern epidemic caused by prolonged device usage and it can lead to significant neck strain and discomfort. This paper addresses the challenge of detecting and preventing tech neck syndrome using non-invasive ubiquitous sensing techniques. We present NeckCare, a novel system leveraging hearable sensors, including IMUs and microphones, to monitor tech neck postures and estimate distance form screen in real-time. By analyzing pitch, displacement, and acoustic ranging data from 15 participants, we achieve posture classification accuracy of 96% using IMU data alone and 99% when combined with audio data. Our distance estimation technique is millimeter-level accurate even in noisy conditions. NeckCare provides immediate feedback to users, promoting healthier posture and reducing neck strain. Future work will explore personalizing alerts, predicting muscle strain, integrating neck exercise detection and enhancing digital eye strain prediction.
Abstract:Audio signals can reveal intimate details about a person's life, including their conversations, health status, emotions, location, and personal preferences. Unauthorized access or misuse of this information can have profound personal and social implications. In an era increasingly populated by devices capable of audio recording, safeguarding user privacy is a critical obligation. This work studies the ethical and privacy concerns in current audio classification systems. We discuss the challenges and research directions in designing privacy-preserving audio sensing systems. We propose privacy-preserving audio features that can be used to classify wide range of audio classes, while being privacy preserving.
Abstract:Proper indoor ventilation through buildings' heating, ventilation, and air conditioning (HVAC) systems has become an increasing public health concern that significantly impacts individuals' health and safety at home, work, and school. While much work has progressed in providing energy-efficient and user comfort for HVAC systems through IoT devices and mobile-sensing approaches, ventilation is an aspect that has received lesser attention despite its importance. With a motivation to monitor airflow from building ventilation systems through commodity sensing devices, we present FlowSense, a machine learning-based algorithm to predict airflow rate from sensed audio data in indoor spaces. Our ML technique can predict the state of an air vent-whether it is on or off-as well as the rate of air flowing through active vents. By exploiting a low-pass filter to obtain low-frequency audio signals, we put together a privacy-preserving pipeline that leverages a silence detection algorithm to only sense for sounds of air from HVAC air vent when no human speech is detected. We also propose the Minimum Persistent Sensing (MPS) as a post-processing algorithm to reduce interference from ambient noise, including ongoing human conversation, office machines, and traffic noises. Together, these techniques ensure user privacy and improve the robustness of FlowSense. We validate our approach yielding over 90% accuracy in predicting vent status and 0.96 MSE in predicting airflow rate when the device is placed within 2.25 meters away from an air vent. Additionally, we demonstrate how our approach as a mobile audio-sensing platform is robust to smartphone models, distance, and orientation. Finally, we evaluate FlowSense privacy-preserving pipeline through a user study and a Google Speech Recognition service, confirming that the audio signals we used as input data are inaudible and inconstructible.