Abstract:Transitioning between topics is a natural component of human-human dialog. Although topic transition has been studied in dialogue for decades, only a handful of corpora based studies have been performed to investigate the subtleties of topic transitions. Thus, this study annotates 215 conversations from the switchboard corpus and investigates how variables such as length, number of topic transitions, topic transitions share by participants and turns/topic are related. This work presents an empirical study on topic transition in switchboard corpus followed by modelling topic transition with a precision of 83% for in-domain(id) test set and 82% on 10 out-of-domain}(ood) test set. It is envisioned that this work will help in emulating human-human like topic transition in open-domain dialog systems.
Abstract:Through proliferation on smartphones and smart speakers, intelligent personal assistants (IPAs) have made speech a common interaction modality. Yet, due to linguistic coverage and varying levels of functionality, many speakers engage with IPAs using a non-native language. This may impact the mental workload and pattern of language production displayed by non-native speakers. We present a mixed-design experiment, wherein native (L1) and non-native (L2) English speakers completed tasks with IPAs through smartphones and smart speakers. We found significantly higher mental workload for L2 speakers during IPA interactions. Contrary to our hypotheses, we found no significant differences between L1 and L2 speakers in terms of number of turns, lexical complexity, diversity, or lexical adaptation when encountering errors. These findings are discussed in relation to language production and processing load increases for L2 speakers in IPA interaction.
Abstract:Limited linguistic coverage for Intelligent Personal Assistants (IPAs) means that many interact in a non-native language. Yet we know little about how IPAs currently support or hinder these users. Through native (L1) and non-native (L2) English speakers interacting with Google Assistant on a smartphone and smart speaker, we aim to understand this more deeply. Interviews revealed that L2 speakers prioritised utterance planning around perceived linguistic limitations, as opposed to L1 speakers prioritising succinctness because of system limitations. L2 speakers see IPAs as insensitive to linguistic needs resulting in failed interaction. L2 speakers clearly preferred using smartphones, as visual feedback supported diagnoses of communication breakdowns whilst allowing time to process query results. Conversely, L1 speakers preferred smart speakers, with audio feedback being seen as sufficient. We discuss the need to tailor the IPA experience for L2 users, emphasising visual feedback whilst reducing the burden of language production.