Abstract:Developing and certifying safe - or so-called trustworthy - AI has become an increasingly salient issue, especially in light of upcoming regulation such as the EU AI Act. In this context, the black-box nature of machine learning models limits the use of conventional avenues of approach towards certifying complex technical systems. As a potential solution, methods to give insights into this black-box - devised in the field of eXplainable AI (XAI) - could be used. In this study, the potential and shortcomings of such methods for the purpose of safe AI development and certification are discussed in 15 qualitative interviews with experts out of the areas of (X)AI and certification. We find that XAI methods can be a helpful asset for safe AI development, as they can show biases and failures of ML-models, but since certification relies on comprehensive and correct information about technical systems, their impact is expected to be limited.
Abstract:Decision processes of computer vision models - especially deep neural networks - are opaque in nature, meaning that these decisions cannot be understood by humans. Thus, over the last years, many methods to provide human-understandable explanations have been proposed. For image classification, the most common group are saliency methods, which provide (super-)pixelwise feature attribution scores for input images. But their evaluation still poses a problem, as their results cannot be simply compared to the unknown ground truth. To overcome this, a slew of different proxy metrics have been defined, which are - as the explainability methods themselves - often built on intuition and thus, are possibly unreliable. In this paper, new evaluation metrics for saliency methods are developed and common saliency methods are benchmarked on ImageNet. In addition, a scheme for reliability evaluation of such metrics is proposed that is based on concepts from psychometric testing. The used code can be found at https://github.com/lelo204/ClassificationMetricsForImageExplanations .
Abstract:This paper investigates the relationship between law and eXplainable Artificial Intelligence (XAI). While there is much discussion about the AI Act, for which the trilogue of the European Parliament, Council and Commission recently concluded, other areas of law seem underexplored. This paper focuses on European (and in part German) law, although with international concepts and regulations such as fiduciary plausibility checks, the General Data Protection Regulation (GDPR), and product safety and liability. Based on XAI-taxonomies, requirements for XAI-methods are derived from each of the legal bases, resulting in the conclusion that each legal basis requires different XAI properties and that the current state of the art does not fulfill these to full satisfaction, especially regarding the correctness (sometimes called fidelity) and confidence estimates of XAI-methods.
Abstract:Despite large progress in Explainable and Safe AI, practitioners suffer from a lack of regulation and standards for AI safety. In this work we merge recent regulation efforts by the European Union and first proposals for AI guidelines with recent trends in research: data and model cards. We propose the use of standardized cards to document AI applications throughout the development process. Our main contribution is the introduction of use-case and operation cards, along with updates for data and model cards to cope with regulatory requirements. We reference both recent research as well as the source of the regulation in our cards and provide references to additional support material and toolboxes whenever possible. The goal is to design cards that help practitioners develop safe AI systems throughout the development process, while enabling efficient third-party auditing of AI applications, being easy to understand, and building trust in the system. Our work incorporates insights from interviews with certification experts as well as developers and individuals working with the developed AI applications.