Abstract:This paper addresses the problem of formalizing and quantifying the concept of "intensional inheritance" between two concepts. We begin by conceiving the intensional inheritance of $W$ from $F$ as the amount of information the proposition "x is $F$ " provides about the proposition "x is $W$. To flesh this out, we consider concepts $F$ and $W$ defined by sets of properties $\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ and $\left\{W_{1}, W_{2}, \ldots, W_{m}\right\}$ with associated degrees $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ and $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, respectively, where the properties may overlap. We then derive formulas for the intensional inheritance using both Shannon information theory and algorithmic information theory, incorporating interaction information among properties. We examine a special case where all properties are mutually exclusive and calculate the intensional inheritance in this case in both frameworks. We also derive expressions for $P(W \mid F)$ based on the mutual information formula. Finally we consider the relationship between intensional inheritance and conventional set-theoretic "extensional" inheritance, concluding that in our information-theoretic framework, extensional inheritance emerges as a special case of intensional inheritance.
Abstract:This paper introduces ActPC-Geom, an approach to accelerate Active Predictive Coding (ActPC) in neural networks by integrating information geometry, specifically using Wasserstein-metric-based methods for measure-dependent gradient flows. We propose replacing KL-divergence in ActPC's predictive error assessment with the Wasserstein metric, suggesting this may enhance network robustness. To make this computationally feasible, we present strategies including: (1) neural approximators for inverse measure-dependent Laplacians, (2) approximate kernel PCA embeddings for low-rank approximations feeding into these approximators, and (3) compositional hypervector embeddings derived from kPCA outputs, with algebra optimized for fuzzy FCA lattices learned through neural architectures analyzing network states. This results in an ActPC architecture capable of real-time online learning and integrating continuous (e.g., transformer-like or Hopfield-net-like) and discrete symbolic ActPC networks, including frameworks like OpenCog Hyperon or ActPC-Chem for algorithmic chemistry evolution. Shared probabilistic, concept-lattice, and hypervector models enable symbolic-subsymbolic integration. Key features include (1) compositional reasoning via hypervector embeddings in transformer-like architectures for tasks like commonsense reasoning, and (2) Hopfield-net dynamics enabling associative long-term memory and attractor-driven cognitive features. We outline how ActPC-Geom combines few-shot learning with online weight updates, enabling deliberative thinking and seamless symbolic-subsymbolic reasoning. Ideas from Galois connections are explored for efficient hybrid ActPC/ActPC-Chem processing. Finally, we propose a specialized HPC design optimized for real-time focused attention and deliberative reasoning tailored to ActPC-Geom's demands.
Abstract:We provide a comparative analysis of the deduction, induction, and abduction formulas used in Probabilistic Logic Networks (PLN) and the Non-Axiomatic Reasoning System (NARS), two uncertain reasoning frameworks aimed at AGI. One difference between the two systems is that, at the level of individual inference rules, PLN directly leverages both term and relationship probabilities, whereas NARS only leverages relationship frequencies and has no simple analogue of term probabilities. Thus we focus here on scenarios where there is high uncertainty about term probabilities, and explore how this uncertainty influences the comparative inferential conclusions of the two systems. We compare the product of strength and confidence ($s\times c$) in PLN against the product of frequency and confidence ($f\times c$) in NARS (quantities we refer to as measuring the "power" of an uncertain statement) in cases of high term probability uncertainty, using heuristic analyses and elementary numerical computations. We find that in many practical situations with high term probability uncertainty, PLN and NARS formulas give very similar results for the power of an inference conclusion, even though they sometimes come to these similar numbers in quite different ways.
Abstract:We articulate here a series of specific metagoals designed to address the challenge of creating AGI systems that possess the ability to flexibly self-modify yet also have the propensity to maintain key invariant properties of their goal systems 1) a series of goal-stability metagoals aimed to guide a system to a condition in which goal-stability is compatible with reasonably flexible self-modification 2) a series of moderated-goal-evolution metagoals aimed to guide a system to a condition in which control of the pace of goal evolution is compatible with reasonably flexible self-modification The formulation of the metagoals is founded on fixed-point theorems from functional analysis, e.g. the Contraction Mapping Theorem and constructive approximations to Schauder's Theorem, applied to probabilistic models of system behavior We present an argument that the balancing of self-modification with maintenance of goal invariants will often have other interesting cognitive side-effects such as a high degree of self understanding Finally we argue for the practical value of a hybrid metagoal combining moderated-goal-evolution with pursuit of goal-stability -- along with potentially other metagoals relating to goal-satisfaction, survival and ongoing development -- in a flexible fashion depending on the situation
Abstract:We explore a novel paradigm (labeled ActPC-Chem) for biologically inspired, goal-guided artificial intelligence (AI) centered on a form of Discrete Active Predictive Coding (ActPC) operating within an algorithmic chemistry of rewrite rules. ActPC-Chem is envisioned as a foundational "cognitive kernel" for advanced cognitive architectures, such as the OpenCog Hyperon system, incorporating essential elements of the PRIMUS cognitive architecture. The central thesis is that general-intelligence-capable cognitive structures and dynamics can emerge in a system where both data and models are represented as evolving patterns of metagraph rewrite rules, and where prediction errors, intrinsic and extrinsic rewards, and semantic constraints guide the continual reorganization and refinement of these rules. Using a virtual "robot bug" thought experiment, we illustrate how such a system might self-organize to handle challenging tasks involving delayed and context-dependent rewards, integrating causal rule inference (AIRIS) and probabilistic logical abstraction (PLN) to discover and exploit conceptual patterns and causal constraints. Next, we describe how continuous predictive coding neural networks, which excel at handling noisy sensory data and motor control signals, can be coherently merged with the discrete ActPC substrate. Finally, we outline how these ideas might be extended to create a transformer-like architecture that foregoes traditional backpropagation in favor of rule-based transformations guided by ActPC. This layered architecture, supplemented with AIRIS and PLN, promises structured, multi-modal, and logically consistent next-token predictions and narrative sequences.
Abstract:This report summarizes a short study of the performance of GPT-4 on the ETHICS dataset. The ETHICS dataset consists of five sub-datasets covering different fields of ethics: Justice, Deontology, Virtue Ethics, Utilitarianism, and Commonsense Ethics. The moral judgments were curated so as to have a high degree of agreement with the aim of representing shared human values rather than moral dilemmas. GPT-4's performance is much better than that of previous models and suggests that learning to work with common human values is not the hard problem for AI ethics.
Abstract:A moderately detailed consideration of interactive LLMs as cognitive systems is given, focusing on LLMs circa mid-2023 such as ChatGPT, GPT-4, Bard, Llama, etc.. Cognitive strengths of these systems are reviewed, and then careful attention is paid to the substantial differences between the sort of cognitive system these LLMs are, and the sort of cognitive systems human beings are. It is found that many of the practical weaknesses of these AI systems can be tied specifically to lacks in the basic cognitive architectures according to which these systems are built. It is argued that incremental improvement of such LLMs is not a viable approach to working toward human-level AGI, in practical terms given realizable amounts of compute resources. This does not imply there is nothing to learn about human-level AGI from studying and experimenting with LLMs, nor that LLMs cannot form significant parts of human-level AGI architectures that also incorporate other ideas. Social and ethical matters regarding LLMs are very briefly touched from this perspective, which implies that while care should be taken regarding misinformation and other issues, and economic upheavals will need their own social remedies based on their unpredictable course as with any powerfully impactful technology, overall the sort of policy needed as regards modern LLMs is quite different than would be the case if a more credible approximation to human-level AGI were at hand.
Abstract:We introduce a formal meta-language for probabilistic programming, capable of expressing both programs and the type systems in which they are embedded. We are motivated here by the desire to allow an AGI to learn not only relevant knowledge (programs/proofs), but also appropriate ways of reasoning (logics/type systems). We draw on the frameworks of cubical type theory and dependent typed metagraphs to formalize our approach. In doing so, we show that specific constructions within the meta-language can be related via bisimulation (implying path equivalence) to the type systems they correspond. In doing so, our approach provides a convenient means of deriving synthetic denotational semantics for various type systems. Particularly, we derive bisimulations for pure type systems (PTS), and probabilistic dependent type systems (PDTS). We discuss further the relationship of PTS to non-well-founded set theory.
Abstract:We present the cognitive architecture of an autonomous agent for active portfolio management in decentralized finance, involving activities such as asset selection, portfolio balancing, liquidity provision, and trading. Partial implementation of the architecture is provided and supplied with preliminary results and conclusions.
Abstract:A multi-decade exploration into the theoretical foundations of artificial and natural general intelligence, which has been expressed in a series of books and papers and used to guide a series of practical and research-prototype software systems, is reviewed at a moderate level of detail. The review covers underlying philosophies (patternist philosophy of mind, foundational phenomenological and logical ontology), formalizations of the concept of intelligence, and a proposed high level architecture for AGI systems partly driven by these formalizations and philosophies. The implementation of specific cognitive processes such as logical reasoning, program learning, clustering and attention allocation in the context and language of this high level architecture is considered, as is the importance of a common (e.g. typed metagraph based) knowledge representation for enabling "cognitive synergy" between the various processes. The specifics of human-like cognitive architecture are presented as manifestations of these general principles, and key aspects of machine consciousness and machine ethics are also treated in this context. Lessons for practical implementation of advanced AGI in frameworks such as OpenCog Hyperon are briefly considered.