Abstract:A moderately detailed consideration of interactive LLMs as cognitive systems is given, focusing on LLMs circa mid-2023 such as ChatGPT, GPT-4, Bard, Llama, etc.. Cognitive strengths of these systems are reviewed, and then careful attention is paid to the substantial differences between the sort of cognitive system these LLMs are, and the sort of cognitive systems human beings are. It is found that many of the practical weaknesses of these AI systems can be tied specifically to lacks in the basic cognitive architectures according to which these systems are built. It is argued that incremental improvement of such LLMs is not a viable approach to working toward human-level AGI, in practical terms given realizable amounts of compute resources. This does not imply there is nothing to learn about human-level AGI from studying and experimenting with LLMs, nor that LLMs cannot form significant parts of human-level AGI architectures that also incorporate other ideas. Social and ethical matters regarding LLMs are very briefly touched from this perspective, which implies that while care should be taken regarding misinformation and other issues, and economic upheavals will need their own social remedies based on their unpredictable course as with any powerfully impactful technology, overall the sort of policy needed as regards modern LLMs is quite different than would be the case if a more credible approximation to human-level AGI were at hand.
Abstract:This report summarizes a short study of the performance of GPT-4 on the ETHICS dataset. The ETHICS dataset consists of five sub-datasets covering different fields of ethics: Justice, Deontology, Virtue Ethics, Utilitarianism, and Commonsense Ethics. The moral judgments were curated so as to have a high degree of agreement with the aim of representing shared human values rather than moral dilemmas. GPT-4's performance is much better than that of previous models and suggests that learning to work with common human values is not the hard problem for AI ethics.
Abstract:We introduce a formal meta-language for probabilistic programming, capable of expressing both programs and the type systems in which they are embedded. We are motivated here by the desire to allow an AGI to learn not only relevant knowledge (programs/proofs), but also appropriate ways of reasoning (logics/type systems). We draw on the frameworks of cubical type theory and dependent typed metagraphs to formalize our approach. In doing so, we show that specific constructions within the meta-language can be related via bisimulation (implying path equivalence) to the type systems they correspond. In doing so, our approach provides a convenient means of deriving synthetic denotational semantics for various type systems. Particularly, we derive bisimulations for pure type systems (PTS), and probabilistic dependent type systems (PDTS). We discuss further the relationship of PTS to non-well-founded set theory.
Abstract:We present the cognitive architecture of an autonomous agent for active portfolio management in decentralized finance, involving activities such as asset selection, portfolio balancing, liquidity provision, and trading. Partial implementation of the architecture is provided and supplied with preliminary results and conclusions.
Abstract:A multi-decade exploration into the theoretical foundations of artificial and natural general intelligence, which has been expressed in a series of books and papers and used to guide a series of practical and research-prototype software systems, is reviewed at a moderate level of detail. The review covers underlying philosophies (patternist philosophy of mind, foundational phenomenological and logical ontology), formalizations of the concept of intelligence, and a proposed high level architecture for AGI systems partly driven by these formalizations and philosophies. The implementation of specific cognitive processes such as logical reasoning, program learning, clustering and attention allocation in the context and language of this high level architecture is considered, as is the importance of a common (e.g. typed metagraph based) knowledge representation for enabling "cognitive synergy" between the various processes. The specifics of human-like cognitive architecture are presented as manifestations of these general principles, and key aspects of machine consciousness and machine ethics are also treated in this context. Lessons for practical implementation of advanced AGI in frameworks such as OpenCog Hyperon are briefly considered.
Abstract:It is argued that a broad class of AGI-relevant algorithms can be expressed in a common formal framework, via specifying Galois connections linking search and optimization processes on directed metagraphs whose edge targets are labeled with probabilistic dependent types, and then showing these connections are fulfilled by processes involving metagraph chronomorphisms. Examples are drawn from the core cognitive algorithms used in the OpenCog AGI framework: Probabilistic logical inference, evolutionary program learning, pattern mining, agglomerative clustering, pattern mining and nonlinear-dynamical attention allocation. The analysis presented involves representing these cognitive algorithms as recursive discrete decision processes involving optimizing functions defined over metagraphs, in which the key decisions involve sampling from probability distributions over metagraphs and enacting sets of combinatory operations on selected sub-metagraphs. The mutual associativity of the combinatory operations involved in a cognitive process is shown to often play a key role in enabling the decomposition of the process into folding and unfolding operations; a conclusion that has some practical implications for the particulars of cognitive processes, e.g. militating toward use of reversible logic and reversible program execution. It is also observed that where this mutual associativity holds, there is an alignment between the hierarchy of subgoals used in recursive decision process execution and a hierarchy of subpatterns definable in terms of formal pattern theory.
Abstract:A novel optimization strategy, Info-Evo, is described, in which natural gradient search using nonparametric Fisher information is used to provide ongoing guidance to an evolutionary learning algorithm, so that the evolutionary process preferentially moves in the directions identified as "shortest paths" according to the natural gradient. Some specifics regarding the application of this approach to automated program learning are reviewed, including a strategy for integrating Info-Evo into the MOSES program learning framework.
Abstract:It is argued that a fuzzy version of 4-truth-valued paraconsistent logic (with truth values corresponding to True, False, Both and Neither) can be approximately isomorphically mapped into the complex-number algebra of quantum probabilities. I.e., p-bits (paraconsistent bits) can be transformed into close approximations of qubits. The approximation error can be made arbitrarily small, at least in a formal sense, and can be related to the degree of irreducible "evidential error" assumed to plague an observer's observations. This logical correspondence manifests itself in program space via an approximate mapping between probabilistic and quantum types in programming languages.
Abstract:It is argued that 4-valued paraconsistent truth values (called here "p-bits") can serve as a conceptual, mathematical and practical foundation for highly AI-relevant forms of probabilistic logic and probabilistic programming and concept formation. First it is shown that appropriate averaging-across-situations and renormalization of 4-valued p-bits operating in accordance with Constructible Duality (CD) logic yields PLN (Probabilistic Logic Networks) strength-and-confidence truth values. Then variations on the Curry-Howard correspondence are used to map these paraconsistent and probabilistic logics into probabilistic types suitable for use within dependent type based programming languages. Zach Weber's paraconsistent analysis of the sorites paradox is extended to form a paraconsistent / probabilistic / fuzzy analysis of concept boundaries; and a paraconsistent version of concept formation via Formal Concept Analysis is presented, building on a definition of fuzzy property-value degrees in terms of relative entropy on paraconsistent probability distributions. These general points are fleshed out via reference to the realization of probabilistic reasoning and programming and concept formation in the OpenCog AGI framework which is centered on collaborative multi-algorithm updating of a common knowledge metagraph.
Abstract:Typed metagraphs are defined as hypergraphs with types assigned to hyperedges and their targets, and the potential to have targets of hyperedges connect to whole links as well as targets. Directed typed metagraphs (DTMGs) are introduced via partitioning the targets of each edge in a typed metagraph into input, output and lateral sets; one can then look at "metapaths" in which edges' output-sets are linked to other edges' input-sets. An initial algebra approach to DTMGs is presented, including introduction of constructors for building up DTMGs and laws regarding relationships among multiple ways of using these constructors. A menagerie of useful morphism types is then defined on DTMGs (catamorphisms, anamorphisms, histomorphisms, futumorphisms, hylomorphisms, chronomorphisms, metamorphisms and metachronomorphisms), providing a general abstract framework for formulating a broad variety of metagraph operations. Deterministic and stochastic processes on typed metagraphs are represented in terms of forests of DTMGs defined over a common TMG, where the various morphisms can be straightforwardly extended to these forests. A variation of the approach to undirected typed metagraphs is presented; and it is indicated how the framework outlined can applied to realistic metagraphs involving complexities like dependent and probabilistic types, multidimensional values and dynamic processing including insertion and deletion of edges.