Abstract:This report summarizes a short study of the performance of GPT-4 on the ETHICS dataset. The ETHICS dataset consists of five sub-datasets covering different fields of ethics: Justice, Deontology, Virtue Ethics, Utilitarianism, and Commonsense Ethics. The moral judgments were curated so as to have a high degree of agreement with the aim of representing shared human values rather than moral dilemmas. GPT-4's performance is much better than that of previous models and suggests that learning to work with common human values is not the hard problem for AI ethics.
Abstract:In this work in progress, we demonstrate a new use-case for the ENIGMA system. The ENIGMA system using the XGBoost implementation of gradient boosted decision trees has demonstrated high capability to learn to guide the E theorem prover's inferences in real-time. Here, we strip E to the bare bones: we replace the KBO term ordering with an identity relation as the minimal possible ordering, disable literal selection, and replace evolved strategies with a simple combination of the clause weight and FIFO (first in first out) clause evaluation functions. We experimentally demonstrate that ENIGMA can learn to guide E as well as the smart, evolved strategies even without these standard automated theorem prover functionalities. To this end, we experiment with XGBoost's meta-parameters over a dozen loops.