Abstract:Pedestrian detection remains a critical problem in various domains, such as computer vision, surveillance, and autonomous driving. In particular, accurate and instant detection of pedestrians in low-light conditions and reduced visibility is of utmost importance for autonomous vehicles to prevent accidents and save lives. This paper aims to comprehensively survey various pedestrian detection approaches, baselines, and datasets that specifically target low-light conditions. The survey discusses the challenges faced in detecting pedestrians at night and explores state-of-the-art methodologies proposed in recent years to address this issue. These methodologies encompass a diverse range, including deep learning-based, feature-based, and hybrid approaches, which have shown promising results in enhancing pedestrian detection performance under challenging lighting conditions. Furthermore, the paper highlights current research directions in the field and identifies potential solutions that merit further investigation by researchers. By thoroughly examining pedestrian detection techniques in low-light conditions, this survey seeks to contribute to the advancement of safer and more reliable autonomous driving systems and other applications related to pedestrian safety. Accordingly, most of the current approaches in the field use deep learning-based image fusion methodologies (i.e., early, halfway, and late fusion) for accurate and reliable pedestrian detection. Moreover, the majority of the works in the field (approximately 48%) have been evaluated on the KAIST dataset, while the real-world video feeds recorded by authors have been used in less than six percent of the works.
Abstract:Nowadays, utilizing Advanced Driver-Assistance Systems (ADAS) has absorbed a huge interest as a potential solution for reducing road traffic issues. Despite recent technological advances in such systems, there are still many inquiries that need to be overcome. For instance, ADAS requires accurate and real-time detection of pedestrians in various driving scenarios. To solve the mentioned problem, this paper aims to fine-tune the YOLOv5s framework for handling pedestrian detection challenges on the real-world instances of Caltech pedestrian dataset. We also introduce a developed toolbox for preparing training and test data and annotations of Caltech pedestrian dataset into the format recognizable by YOLOv5. Experimental results of utilizing our approach show that the mean Average Precision (mAP) of our fine-tuned model for pedestrian detection task is more than 91 percent when performing at the highest rate of 70 FPS. Moreover, the experiments on the Caltech pedestrian dataset samples have verified that our proposed approach is an effective and accurate method for pedestrian detection and can outperform other existing methodologies.