Abstract:Table Structure Recognition (TSR) is vital for various downstream tasks like information retrieval, table reconstruction, and document understanding. While most state-of-the-art (SOTA) research predominantly focuses on TSR in English documents, the need for similar capabilities in other languages is evident, considering the global diversity of data. Moreover, creating substantial labeled data in non-English languages and training these SOTA models from scratch is costly and time-consuming. We propose TSR as a language-agnostic cell arrangement prediction and introduce SPRINT, Script-agnostic Structure Recognition in Tables. SPRINT uses recently introduced Optimized Table Structure Language (OTSL) sequences to predict table structures. We show that when coupled with a pre-trained table grid estimator, SPRINT can improve the overall tree edit distance-based similarity structure scores of tables even for non-English documents. We experimentally evaluate our performance across benchmark TSR datasets including PubTabNet, FinTabNet, and PubTables-1M. Our findings reveal that SPRINT not only matches SOTA models in performance on standard datasets but also demonstrates lower latency. Additionally, SPRINT excels in accurately identifying table structures in non-English documents, surpassing current leading models by showing an absolute average increase of 11.12%. We also present an algorithm for converting valid OTSL predictions into a widely used HTML-based table representation. To encourage further research, we release our code and Multilingual Scanned and Scene Table Structure Recognition Dataset, MUSTARD labeled with OTSL sequences for 1428 tables in thirteen languages encompassing several scripts at https://github.com/IITB-LEAP-OCR/SPRINT
Abstract:In recent years, the field of Handwritten Text Recognition (HTR) has seen the emergence of various new models, each claiming to perform competitively better than the other in specific scenarios. However, making a fair comparison of these models is challenging due to inconsistent choices and diversity in test sets. Furthermore, recent advancements in HTR often fail to account for the diverse languages, especially Indic languages, likely due to the scarcity of relevant labeled datasets. Moreover, much of the previous work has focused primarily on character-level or word-level recognition, overlooking the crucial stage of Handwritten Text Detection (HTD) necessary for building a page-level end-to-end handwritten OCR pipeline. Through our paper, we address these gaps by making three pivotal contributions. Firstly, we present an end-to-end framework for Page-Level hAndwriTTen TExt Recognition (PLATTER) by treating it as a two-stage problem involving word-level HTD followed by HTR. This approach enables us to identify, assess, and address challenges in each stage independently. Secondly, we demonstrate the usage of PLATTER to measure the performance of our language-agnostic HTD model and present a consistent comparison of six trained HTR models on ten diverse Indic languages thereby encouraging consistent comparisons. Finally, we also release a Corpus of Handwritten Indic Scripts (CHIPS), a meticulously curated, page-level Indic handwritten OCR dataset labeled for both detection and recognition purposes. Additionally, we release our code and trained models, to encourage further contributions in this direction.
Abstract:Several recent deep learning (DL) based techniques perform considerably well on image-based multilingual text detection. However, their performance relies heavily on the availability and quality of training data. There are numerous types of page-level document images consisting of information in several modalities, languages, fonts, and layouts. This makes text detection a challenging problem in the field of computer vision (CV), especially for low-resource or handwritten languages. Furthermore, there is a scarcity of word-level labeled data for text detection, especially for multilingual settings and Indian scripts that incorporate both printed and handwritten text. Conventionally, Indian script text detection requires training a DL model on plenty of labeled data, but to the best of our knowledge, no relevant datasets are available. Manual annotation of such data requires a lot of time, effort, and expertise. In order to solve this problem, we propose TEXTRON, a Data Programming-based approach, where users can plug various text detection methods into a weak supervision-based learning framework. One can view this approach to multilingual text detection as an ensemble of different CV-based techniques and DL approaches. TEXTRON can leverage the predictions of DL models pre-trained on a significant amount of language data in conjunction with CV-based methods to improve text detection in other languages. We demonstrate that TEXTRON can improve the detection performance for documents written in Indian languages, despite the absence of corresponding labeled data. Further, through extensive experimentation, we show improvement brought about by our approach over the current State-of-the-art (SOTA) models, especially for handwritten Devanagari text. Code and dataset has been made available at https://github.com/IITB-LEAP-OCR/TEXTRON