Abstract:Current methods for 3D object reconstruction from a set of planar cross-sections still struggle to capture detailed topology or require a considerable number of cross-sections. In this paper, we present, to the best of our knowledge the first 3D shape reconstruction network to solve this task which additionally uses orthographic projections of the shape. Our method is based on applying a Reinforcement Learning algorithm to learn how to effectively parse the shape using a trial-and-error scheme relying on scalar rewards. This method cuts a part of a 3D shape in each step which is then approximated as a polygon mesh. The agent aims to maximize the reward that depends on the accuracy of surface reconstruction for the approximated parts. We also consider pre-training of the network for faster learning using demonstrations generated by a heuristic approach. Experiments show that our training algorithm which benefits from both imitation learning and also self exploration, learns efficient policies faster, which results the agent to produce visually compelling results.
Abstract:We present RLSS: a reinforcement learning algorithm for sequential scene generation. This is based on employing the proximal policy optimization (PPO) algorithm for generative problems. In particular, we consider how to effectively reduce the action space by including a greedy search algorithm in the learning process. Our experiments demonstrate that our method converges for a relatively large number of actions and learns to generate scenes with predefined design objectives. This approach is placing objects iteratively in the virtual scene. In each step, the network chooses which objects to place and selects positions which result in maximal reward. A high reward is assigned if the last action resulted in desired properties whereas the violation of constraints is penalized. We demonstrate the capability of our method to generate plausible and diverse scenes efficiently by solving indoor planning problems and generating Angry Birds levels.