Abstract:Interpreting the learning dynamics of neural networks can provide useful insights into how networks learn and the development of better training and design approaches. We present an approach to interpret learning in neural networks by measuring relative weight change on a per layer basis and dynamically aggregating emerging trends through combination of dimensionality reduction and clustering which allows us to scale to very deep networks. We use this approach to investigate learning in the context of vision tasks across a variety of state-of-the-art networks and provide insights into the learning behavior of these networks, including how task complexity affects layer-wise learning in deeper layers of networks.
Abstract:Understanding the per-layer learning dynamics of deep neural networks is of significant interest as it may provide insights into how neural networks learn and the potential for better training regimens. We investigate learning in Deep Convolutional Neural Networks (CNNs) by measuring the relative weight change of layers while training. Several interesting trends emerge in a variety of CNN architectures across various computer vision classification tasks, including the overall increase in relative weight change of later layers as compared to earlier ones.