Abstract:We investigate the use of hierarchical phrase-based SMT lattices in end-to-end neural machine translation (NMT). Weight pushing transforms the Hiero scores for complete translation hypotheses, with the full translation grammar score and full n-gram language model score, into posteriors compatible with NMT predictive probabilities. With a slightly modified NMT beam-search decoder we find gains over both Hiero and NMT decoding alone, with practical advantages in extending NMT to very large input and output vocabularies.
Abstract:We address the problem of automatically finding the parameters of a statistical machine translation system that maximize BLEU scores while ensuring that decoding speed exceeds a minimum value. We propose the use of Bayesian Optimization to efficiently tune the speed-related decoding parameters by easily incorporating speed as a noisy constraint function. The obtained parameter values are guaranteed to satisfy the speed constraint with an associated confidence margin. Across three language pairs and two speed constraint values, we report overall optimization time reduction compared to grid and random search. We also show that Bayesian Optimization can decouple speed and BLEU measurements, resulting in a further reduction of overall optimization time as speed is measured over a small subset of sentences.