Abstract:Classification with a large number of classes is a key problem in machine learning and corresponds to many real-world applications like tagging of images or textual documents in social networks. If one-vs-all methods usually reach top performance in this context, these approaches suffer from a high inference complexity, linear w.r.t the number of categories. Different models based on the notion of binary codes have been proposed to overcome this limitation, achieving in a sublinear inference complexity. But they a priori need to decide which binary code to associate to which category before learning using more or less complex heuristics. We propose a new end-to-end model which aims at simultaneously learning to associate binary codes with categories, but also learning to map inputs to binary codes. This approach called Deep Stochastic Neural Codes (DSNC) keeps the sublinear inference complexity but do not need any a priori tuning. Experimental results on different datasets show the effectiveness of the approach w.r.t baseline methods.
Abstract:We consider the problem of learning hierarchical policies for Reinforcement Learning able to discover options, an option corresponding to a sub-policy over a set of primitive actions. Different models have been proposed during the last decade that usually rely on a predefined set of options. We specifically address the problem of automatically discovering options in decision processes. We describe a new learning model called Budgeted Option Neural Network (BONN) able to discover options based on a budgeted learning objective. The BONN model is evaluated on different classical RL problems, demonstrating both quantitative and qualitative interesting results.
Abstract:In order to speed-up classification models when facing a large number of categories, one usual approach consists in organizing the categories in a particular structure, this structure being then used as a way to speed-up the prediction computation. This is for example the case when using error-correcting codes or even hierarchies of categories. But in the majority of approaches, this structure is chosen \textit{by hand}, or during a preliminary step, and not integrated in the learning process. We propose a new model called Reinforced Decision Tree which simultaneously learns how to organize categories in a tree structure and how to classify any input based on this structure. This approach keeps the advantages of existing techniques (low inference complexity) but allows one to build efficient classifiers in one learning step. The learning algorithm is inspired by reinforcement learning and policy-gradient techniques which allows us to integrate the two steps (building the tree, and learning the classifier) in one single algorithm.