Abstract:Training summarization models requires substantial amounts of training data. However for less resourceful languages like Hungarian, openly available models and datasets are notably scarce. To address this gap our paper introduces HunSum-2 an open-source Hungarian corpus suitable for training abstractive and extractive summarization models. The dataset is assembled from segments of the Common Crawl corpus undergoing thorough cleaning, preprocessing and deduplication. In addition to abstractive summarization we generate sentence-level labels for extractive summarization using sentence similarity. We train baseline models for both extractive and abstractive summarization using the collected dataset. To demonstrate the effectiveness of the trained models, we perform both quantitative and qualitative evaluation. Our dataset, models and code are publicly available, encouraging replication, further research, and real-world applications across various domains.
Abstract:Data augmentation methods for neural machine translation are particularly useful when limited amount of training data is available, which is often the case when dealing with low-resource languages. We introduce a novel augmentation method, which generates new sentences by swapping objects and subjects across bisentences. This is performed simultaneously based on the dependency parse trees of the source and target sentences. We name this method TreeSwap. Our results show that TreeSwap achieves consistent improvements over baseline models in 4 language pairs in both directions on resource-constrained datasets. We also explore domain-specific corpora, but find that our method does not make significant improvements on law, medical and IT data. We report the scores of similar augmentation methods and find that TreeSwap performs comparably. We also analyze the generated sentences qualitatively and find that the augmentation produces a correct translation in most cases. Our code is available on Github.
Abstract:We present a generic framework for data augmentation via dependency subtree swapping that is applicable to machine translation. We extract corresponding subtrees from the dependency parse trees of the source and target sentences and swap these across bisentences to create augmented samples. We perform thorough filtering based on graphbased similarities of the dependency trees and additional heuristics to ensure that extracted subtrees correspond to the same meaning. We conduct resource-constrained experiments on 4 language pairs in both directions using the IWSLT text translation datasets and the Hunglish2 corpus. The results demonstrate consistent improvements in BLEU score over our baseline models in 3 out of 4 language pairs. Our code is available on GitHub.
Abstract:We introduce HunSum-1: a dataset for Hungarian abstractive summarization, consisting of 1.14M news articles. The dataset is built by collecting, cleaning and deduplicating data from 9 major Hungarian news sites through CommonCrawl. Using this dataset, we build abstractive summarizer models based on huBERT and mT5. We demonstrate the value of the created dataset by performing a quantitative and qualitative analysis on the models' results. The HunSum-1 dataset, all models used in our experiments and our code are available open source.
Abstract:We train Transformer-based neural machine translation models for Hungarian-English and English-Hungarian using the Hunglish2 corpus. Our best models achieve a BLEU score of 40.0 on HungarianEnglish and 33.4 on English-Hungarian. Furthermore, we present results on an ongoing work about syntax-based augmentation for neural machine translation. Both our code and models are publicly available.
Abstract:I train models for the task of neural machine translation for English-Hungarian and Hungarian-English, using the Hunglish2 corpus. The main contribution of this work is evaluating different data augmentation methods during the training of NMT models. I propose 5 different augmentation methods that are structure-aware, meaning that instead of randomly selecting words for blanking or replacement, the dependency tree of sentences is used as a basis for augmentation. I start my thesis with a detailed literature review on neural networks, sequential modeling, neural machine translation, dependency parsing and data augmentation. After a detailed exploratory data analysis and preprocessing of the Hunglish2 corpus, I perform experiments with the proposed data augmentation techniques. The best model for Hungarian-English achieves a BLEU score of 33.9, while the best model for English-Hungarian achieves a BLEU score of 28.6.
Abstract:Designing complex architectures has been an essential cogwheel in the revolution deep learning has brought about in the past decade. When solving difficult problems in a datadriven manner, a well-tried approach is to take an architecture discovered by renowned deep learning scientists as a basis (e.g. Inception) and try to apply it to a specific problem. This might be sufficient, but as of now, achieving very high accuracy on a complex or yet unsolved task requires the knowledge of highly-trained deep learning experts. In this work, we would like to contribute to the area of Automated Machine Learning (AutoML), specifically Neural Architecture Search (NAS), which intends to make deep learning methods available for a wider range of society by designing neural topologies automatically. Although several different approaches exist (e.g. gradient-based or evolutionary algorithms), our focus is on one of the most promising research directions, reinforcement learning. In this scenario, a recurrent neural network (controller) is trained to create problem-specific neural network architectures (child). The validation accuracies of the child networks serve as a reward signal for training the controller with reinforcement learning. The basis of our proposed work is Efficient Neural Architecture Search (ENAS), where parameter sharing is applied among the child networks. ENAS, like many other RL-based algorithms, emphasize the learning of child networks as increasing their convergence result in a denser reward signal for the controller, therefore significantly reducing training times. The controller was originally trained with REINFORCE. In our research, we propose to modify this to a more modern and complex algorithm, PPO, which has demonstrated to be faster and more stable in other environments. Then, we briefly discuss and evaluate our results.
Abstract:We present an approach for automatic punctuation restoration with BERT models for English and Hungarian. For English, we conduct our experiments on Ted Talks, a commonly used benchmark for punctuation restoration, while for Hungarian we evaluate our models on the Szeged Treebank dataset. Our best models achieve a macro-averaged $F_1$-score of 79.8 in English and 82.2 in Hungarian. Our code is publicly available.