Abstract:Given the extensive and growing capabilities offered by deep learning (DL), more researchers are turning to DL to address complex challenges in next-generation (xG) communications. However, despite its progress, DL also reveals several limitations that are becoming increasingly evident. One significant issue is its lack of interpretability, which is especially critical for safety-sensitive applications. Another significant consideration is that DL may not comply with the constraints set by physics laws or given security standards, which are essential for reliable DL. Additionally, DL models often struggle outside their training data distributions, which is known as poor generalization. Moreover, there is a scarcity of theoretical guidance on designing DL algorithms. These challenges have prompted the emergence of a burgeoning field known as science-informed DL (ScIDL). ScIDL aims to integrate existing scientific knowledge with DL techniques to develop more powerful algorithms. The core objective of this article is to provide a brief tutorial on ScIDL that illustrates its building blocks and distinguishes it from conventional DL. Furthermore, we discuss both recent applications of ScIDL and potential future research directions in the field of wireless communications.
Abstract:In emerging Industrial Cyber-Physical Systems (ICPSs), the joint design of communication and control sub-systems is essential, as these sub-systems are interconnected. In this paper, we study the joint design problem of an event-triggered control and an energy-efficient resource allocation in a fifth generation (5G) wireless network. We formally state the problem as a multi-objective optimization one, aiming to minimize the number of updates on the actuators' input and the power consumption in the downlink transmission. To address the problem, we propose a model-free hierarchical reinforcement learning approach \textcolor{blue}{with uniformly ultimate boundedness stability guarantee} that learns four policies simultaneously. These policies contain an update time policy on the actuators' input, a control policy, and energy-efficient sub-carrier and power allocation policies. Our simulation results show that the proposed approach can properly control a simulated ICPS and significantly decrease the number of updates on the actuators' input as well as the downlink power consumption.