Abstract:Analyzing, understanding, and describing human behavior is advantageous in different settings, such as web browsing or traffic navigation. Understanding human behavior naturally helps to improve and optimize the underlying infrastructure or user interfaces. Typically, human navigation is represented by sequences of transitions between states. Previous work suggests to use hypotheses, representing different intuitions about the navigation to analyze these transitions. To mathematically grasp this setting, first-order Markov chains are used to capture the behavior, consequently allowing to apply different kinds of graph comparisons, but comes with the inherent drawback of losing information about higher-order dependencies within the sequences. To this end, we propose to analyze entire sequences using autoregressive language models, as they are traditionally used to model higher-order dependencies in sequences. We show that our approach can be easily adapted to model different settings introduced in previous work, namely HypTrails, MixedTrails and even SubTrails, while at the same time bringing unique advantages: 1. Modeling higher-order dependencies between state transitions, while 2. being able to identify short comings in proposed hypotheses, and 3. naturally introducing a unified approach to model all settings. To show the expressiveness of our approach, we evaluate our approach on different synthetic datasets and conclude with an exemplary analysis of a real-world dataset, examining the behavior of users who interact with voice assistants.
Abstract:The goal of the present paper is to develop and validate a questionnaire to assess AI literacy. In particular, the questionnaire should be deeply grounded in the existing literature on AI literacy, should be modular (i.e., including different facets that can be used independently of each other) to be flexibly applicable in professional life depending on the goals and use cases, and should meet psychological requirements and thus includes further psychological competencies in addition to the typical facets of AIL. We derived 60 items to represent different facets of AI Literacy according to Ng and colleagues conceptualisation of AI literacy and additional 12 items to represent psychological competencies such as problem solving, learning, and emotion regulation in regard to AI. For this purpose, data were collected online from 300 German-speaking adults. The items were tested for factorial structure in confirmatory factor analyses. The result is a measurement instrument that measures AI literacy with the facets Use & apply AI, Understand AI, Detect AI, and AI Ethics and the ability to Create AI as a separate construct, and AI Self-efficacy in learning and problem solving and AI Self-management. This study contributes to the research on AI literacy by providing a measurement instrument relying on profound competency models. In addition, higher-order psychological competencies are included that are particularly important in the context of pervasive change through AI systems.