Abstract:Training and fine-tuning deep learning models, especially large language models (LLMs), on limited and imbalanced datasets poses substantial challenges. These issues often result in poor generalization, where models overfit to dominant classes and underperform on minority classes, leading to biased predictions and reduced robustness in real-world applications. To overcome these challenges, we propose augmenting features in the embedding space by generating synthetic samples using a range of techniques. By upsampling underrepresented classes, this method improves model performance and alleviates data imbalance. We validate the effectiveness of this approach across multiple open-source text classification benchmarks, demonstrating its potential to enhance model robustness and generalization in imbalanced data scenarios.
Abstract:Institutional bias can impact patient outcomes, educational attainment, and legal system navigation. Written records often reflect bias, and once bias is identified; it is possible to refer individuals for training to reduce bias. Many machine learning tools exist to explore text data and create predictive models that can search written records to identify real-time bias. However, few previous studies investigate large language model embeddings and geometric models of biased text data to understand geometry's impact on bias modeling accuracy. To overcome this issue, this study utilizes the RedditBias database to analyze textual biases. Four transformer models, including BERT and RoBERTa variants, were explored. Post-embedding, t-SNE allowed two-dimensional visualization of data. KNN classifiers differentiated bias types, with lower k-values proving more effective. Findings suggest BERT, particularly mini BERT, excels in bias classification, while multilingual models lag. The recommendation emphasizes refining monolingual models and exploring domain-specific biases.