Abstract:Precise and real-time estimation of the robotic arm's position on the patient's side is essential for the success of remote robotic surgery in Tactile Internet (TI) environments. This paper presents a prediction model based on the Transformer-based Informer framework for accurate and efficient position estimation. Additionally, it combines a Four-State Hidden Markov Model (4-State HMM) to simulate realistic packet loss scenarios. The proposed approach addresses challenges such as network delays, jitter, and packet loss to ensure reliable and precise operation in remote surgical applications. The method integrates the optimization problem into the Informer model by embedding constraints such as energy efficiency, smoothness, and robustness into its training process using a differentiable optimization layer. The Informer framework uses features such as ProbSparse attention, attention distilling, and a generative-style decoder to focus on position-critical features while maintaining a low computational complexity of O(L log L). The method is evaluated using the JIGSAWS dataset, achieving a prediction accuracy of over 90 percent under various network scenarios. A comparison with models such as TCN, RNN, and LSTM demonstrates the Informer framework's superior performance in handling position prediction and meeting real-time requirements, making it suitable for Tactile Internet-enabled robotic surgery.
Abstract:This paper introduces the Adaptive Context-Aware Multi-Path Transmission Control Protocol (ACMPTCP), an efficient approach designed to optimize the performance of Multi-Path Transmission Control Protocol (MPTCP) for data-intensive applications such as augmented and virtual reality (AR/VR) streaming. ACMPTCP addresses the limitations of conventional MPTCP by leveraging deep reinforcement learning (DRL) for agile end-to-end path management and optimal bandwidth allocation, facilitating path realignment across diverse network environments.
Abstract:Emergency communication systems face disruptions due to packet loss, bandwidth constraints, poor signal quality, delays, and jitter in VoIP systems, leading to degraded real-time service quality. Victims in distress often struggle to convey critical information due to panic, speech disorders, and background noise, further complicating dispatchers' ability to assess situations accurately. Staffing shortages in emergency centers exacerbate delays in coordination and assistance. This paper proposes leveraging Large Language Models (LLMs) to address these challenges by reconstructing incomplete speech, filling contextual gaps, and prioritizing calls based on severity. The system integrates real-time transcription with Retrieval-Augmented Generation (RAG) to generate contextual responses, using Twilio and AssemblyAI APIs for seamless implementation. Evaluation shows high precision, favorable BLEU and ROUGE scores, and alignment with real-world needs, demonstrating the model's potential to optimize emergency response workflows and prioritize critical cases effectively.
Abstract:Accurately estimating the position of a patient's side robotic arm in real time in a remote surgery task is a significant challenge, particularly in Tactile Internet (TI) environments. This paper presents a Kalman Filter (KF) based computationally efficient position estimation method. The study also assume no prior knowledge of the dynamic system model of the robotic arm system. Instead, The JIGSAW dataset, which is a comprehensive collection of robotic surgical data, and the Master Tool Manipulator's (MTM) input are utilized to learn the system model using System Identification (SI) toolkit available in Matlab. We further investigate the effectiveness of KF to determine the position of the Patient Side Manipulator (PSM) under simulated network conditions that include delays, jitter, and packet loss. These conditions reflect the typical challenges encountered in real-world Tactile Internet applications. The results of the study highlight KF's resilience and effectiveness in achieving accurate state estimation despite network-induced uncertainties with over 90\% estimation accuracy.
Abstract:Massive multiple input multiple output (M-MIMO) technology plays a pivotal role in fifth-generation (5G) and beyond communication systems, offering a wide range of benefits, from increased spectral efficiency (SE) to enhanced energy efficiency and higher reliability. However, these advantages are contingent upon precise channel state information (CSI) availability at the base station (BS). Ensuring precise CSI is challenging due to the constrained size of the coherence interval and the resulting limitations on pilot sequence length. Therefore, reusing pilot sequences in adjacent cells introduces pilot contamination, hindering SE enhancement. This paper reviews recent advancements and addresses research challenges in mitigating pilot contamination and improving channel estimation, categorizing the existing research into three broader categories: pilot assignment schemes, advanced signal processing methods, and advanced channel estimation techniques. Salient representative pilot mitigation/assignment techniques are analyzed and compared in each category. Lastly, possible future research directions are discussed.
Abstract:5G sets the foundation for an era of creativity with its faster speeds, increased data throughput, reduced latency, and enhanced IoT connectivity, all enabled by Massive MIMO (M-MIMO) technology. M-MIMO boosts network efficiency and enhances user experience by employing intelligent user scheduling. This paper presents a user scheduling scheme and pilot assignment strategy designed for IoT devices, emphasizing mitigating pilot contamination, a key obstacle to improving spectral efficiency (SE) and system scalability in M-MIMO networks. We utilize a user clustering-based pilot allocation scheme to boost IoT device scalability in M-MIMO systems. Additionally, our smart pilot allocation minimizes interference and enhances SE by treating pilot assignment as a graph coloring problem, optimizing it through integer linear programming (ILP). Recognizing the computational complexity of ILP, we introduced a binary search-based heuristic predicated on interference threshold to expedite the computation, while maintaining a near-optimal solution. The simulation results show a significant decrease in the required pilot overhead (about 17%), and substantial enhancement in SE (about 8-14%).
Abstract:Massive MIMO is expected to play an important role in the development of 5G networks. This paper addresses the issue of pilot contamination and scalability in massive MIMO systems. The current practice of reusing orthogonal pilot sequences in adjacent cells leads to difficulty in differentiating incoming inter- and intra-cell pilot sequences. One possible solution is to increase the number of orthogonal pilot sequences, which results in dedicating more space of coherence block to pilot transmission than data transmission. This, in turn, also hinders the scalability of massive MIMO systems, particularly in accommodating a large number of IoT devices within a cell. To overcome these challenges, this paper devises an innovative pilot allocation scheme based on the data transfer patterns of IoT devices. The scheme assigns orthogonal pilot sequences to clusters of devices instead of individual devices, allowing multiple devices to utilize the same pilot for periodically transmitting data. Moreover, we formulate the pilot assignment problem as a graph coloring problem and use the max k-cut graph partitioning approach to overcome the pilot contamination in a multicell massive MIMO system. The proposed scheme significantly improves the spectral efficiency and enables the scalability of massive MIMO systems; for instance, by using ten orthogonal pilot sequences, we are able to accommodate 200 devices with only a 12.5% omission rate.
Abstract:Intricating cardiac complexities are the primary factor associated with healthcare costs and the highest cause of death rate in the world. However, preventive measures like the early detection of cardiac anomalies can prevent severe cardiovascular arrests of varying complexities and can impose a substantial impact on healthcare cost. Encountering such scenarios usually the electrocardiogram (ECG or EKG) is the first diagnostic choice of a medical practitioner or clinical staff to measure the electrical and muscular fitness of an individual heart. This paper presents a system which is capable of reading the recorded ECG and predict the cardiac anomalies without the intervention of a human expert. The paper purpose an algorithm which read and perform analysis on electrocardiogram datasets. The proposed architecture uses the Discrete Wavelet Transform (DWT) at first place to perform preprocessing of ECG data followed by undecimated Wavelet transform (UWT) to extract nine relevant features which are of high interest to a cardiologist. The probabilistic mode named Bayesian Network Classifier is trained using the extracted nine parameters on UCL arrhythmia dataset. The proposed system classifies a recorded heartbeat into four classes using Bayesian Network classifier and Tukey's box analysis. The four classes for the prediction of a heartbeat are (a) Normal Beat, (b) Premature Ventricular Contraction (PVC) (c) Premature Atrial Contraction (PAC) and (d) Myocardial Infarction. The results of experimental setup depict that the proposed system has achieved an average accuracy of 96.6 for PAC\% 92.8\% for MI and 87\% for PVC, with an average error rate of 3.3\% for PAC, 6\% for MI and 12.5\% for PVC on real electrocardiogram datasets including Physionet and European ST-T Database (EDB).