Abstract:We present two families of sub-grid scale (SGS) turbulence models developed for large-eddy simulation (LES) purposes. Their development required the formulation of physics-informed robust and efficient Deep Learning (DL) algorithms which, unlike state-of-the-art analytical modeling techniques can produce high-order complex non-linear relations between inputs and outputs. Explicit filtering of data from direct simulations of the canonical channel flow at two friction Reynolds numbers $Re_\tau\approx 395$ and 590 provided accurate data for training and testing. The two sets of models use different network architectures. One of the architectures uses tensor basis neural networks (TBNN) and embeds the simplified analytical model form of the general effective-viscosity hypothesis, thus incorporating the Galilean, rotational and reflectional invariances. The other architecture is that of a relatively simple network, that is able to incorporate the Galilean invariance only. However, this simpler architecture has better feature extraction capacity owing to its ability to establish relations between and extract information from cross-components of the integrity basis tensors and the SGS stresses. Both sets of models are used to predict the SGS stresses for feature datasets generated with different filter widths, and at different Reynolds numbers. It is shown that due to the simpler model's better feature learning capabilities, it outperforms the invariance embedded model in statistical performance metrics. In a priori tests, both sets of models provide similar levels of dissipation and backscatter. Based on the test results, both sets of models should be usable in a posteriori actual LESs.
Abstract:Objective:Computer vision-based up-to-date accurate damage classification and localization are of decisive importance for infrastructure monitoring, safety, and the serviceability of civil infrastructure. Current state-of-the-art deep learning (DL)-based damage detection models, however, often lack superior feature extraction capability in complex and noisy environments, limiting the development of accurate and reliable object distinction. Method: To this end, we present DenseSPH-YOLOv5, a real-time DL-based high-performance damage detection model where DenseNet blocks have been integrated with the backbone to improve in preserving and reusing critical feature information. Additionally, convolutional block attention modules (CBAM) have been implemented to improve attention performance mechanisms for strong and discriminating deep spatial feature extraction that results in superior detection under various challenging environments. Moreover, additional feature fusion layers and a Swin-Transformer Prediction Head (SPH) have been added leveraging advanced self-attention mechanism for more efficient detection of multiscale object sizes and simultaneously reducing the computational complexity. Results: Evaluating the model performance in large-scale Road Damage Dataset (RDD-2018), at a detection rate of 62.4 FPS, DenseSPH-YOLOv5 obtains a mean average precision (mAP) value of 85.25 %, F1-score of 81.18 %, and precision (P) value of 89.51 % outperforming current state-of-the-art models. Significance: The present research provides an effective and efficient damage localization model addressing the shortcoming of existing DL-based damage detection models by providing highly accurate localized bounding box prediction. Current work constitutes a step towards an accurate and robust automated damage detection system in real-time in-field applications.
Abstract:The paper presents an efficient and robust data-driven deep learning (DL) computational framework developed for linear continuum elasticity problems. The methodology is based on the fundamentals of the Physics Informed Neural Networks (PINNs). For an accurate representation of the field variables, a multi-objective loss function is proposed. It consists of terms corresponding to the residual of the governing partial differential equations (PDE), constitutive relations derived from the governing physics, various boundary conditions, and data-driven physical knowledge fitting terms across randomly selected collocation points in the problem domain. To this end, multiple densely connected independent artificial neural networks (ANNs), each approximating a field variable, are trained to obtain accurate solutions. Several benchmark problems including the Airy solution to elasticity and the Kirchhoff-Love plate problem are solved. Performance in terms of accuracy and robustness illustrates the superiority of the current framework showing excellent agreement with analytical solutions. The present work combines the benefits of the classical methods depending on the physical information available in analytical relations with the superior capabilities of the DL techniques in the data-driven construction of lightweight, yet accurate and robust neural networks. The models developed herein can significantly boost computational speed using minimal network parameters with easy adaptability in different computational platforms.
Abstract:In a growing world of technology, psychological disorders became a challenge to be solved. The methods used for cognitive stimulation are very conventional and based on one-way communication, which only relies on the material or method used for training of an individual. It doesn't use any kind of feedback from the individual to analyze the progress of the training process. We have proposed a closed-loop methodology to improve the cognitive state of a person with ID (Intellectual disability). We have used a platform named 'Armoni', for providing training to the intellectually disabled individuals. The learning is performed in a closed-loop by using feedback in the form of change in affective state. For feedback to the Armoni, an EEG (Electroencephalograph) headband is used. All the changes in EEG are observed and classified against the change in the mean and standard deviation value of all frequency bands of signal. This comparison is being helpful in defining every activity with respect to change in brain signals. In this paper, we have discussed the process of treatment of EEG signal and its definition against the different activities of Armoni. We have tested it on 6 different systems with different age groups and cognitive levels.
Abstract:Early identification and prevention of various plant diseases in commercial farms and orchards is a key feature of precision agriculture technology. This paper presents a high-performance real-time fine-grain object detection framework that addresses several obstacles in plant disease detection that hinder the performance of traditional methods, such as, dense distribution, irregular morphology, multi-scale object classes, textural similarity, etc. The proposed model is built on an improved version of the You Only Look Once (YOLOv4) algorithm. The modified network architecture maximizes both detection accuracy and speed by including the DenseNet in the back-bone to optimize feature transfer and reuse, two new residual blocks in the backbone and neck enhance feature extraction and reduce computing cost; the Spatial Pyramid Pooling (SPP) enhances receptive field, and a modified Path Aggregation Network (PANet) preserves fine-grain localized information and improve feature fusion. Additionally, the use of the Hard-Swish function as the primary activation improved the model's accuracy due to better nonlinear feature extraction. The proposed model is tested in detecting four different diseases in tomato plants under various challenging environments. The model outperforms the existing state-of-the-art detection models in detection accuracy and speed. At a detection rate of 70.19 FPS, the proposed model obtained a precision value of $90.33 \%$, F1-score of $93.64 \%$, and a mean average precision ($mAP$) value of $96.29 \%$. Current work provides an effective and efficient method for detecting different plant diseases in complex scenarios that can be extended to different fruit and crop detection, generic disease detection, and various automated agricultural detection processes.