Abstract:Deep learning-based models have recently outperformed state-of-the-art seasonal forecasting models, such as for predicting El Ni\~no-Southern Oscillation (ENSO). However, current deep learning models are based on convolutional neural networks which are difficult to interpret and can fail to model large-scale atmospheric patterns. In comparison, graph neural networks (GNNs) are capable of modeling large-scale spatial dependencies and are more interpretable due to the explicit modeling of information flow through edge connections. We propose the first application of graph neural networks to seasonal forecasting. We design a novel graph connectivity learning module that enables our GNN model to learn large-scale spatial interactions jointly with the actual ENSO forecasting task. Our model, \graphino, outperforms state-of-the-art deep learning-based models for forecasts up to six months ahead. Additionally, we show that our model is more interpretable as it learns sensible connectivity structures that correlate with the ENSO anomaly pattern.
Abstract:Deep learning-based models have recently outperformed state-of-the-art seasonal forecasting models, such as for predicting El Ni\~no-Southern Oscillation (ENSO). However, current deep learning models are based on convolutional neural networks which are difficult to interpret and can fail to model large-scale atmospheric patterns called teleconnections. Hence, we propose the application of spatiotemporal Graph Neural Networks (GNN) to forecast ENSO at long lead times, finer granularity and improved predictive skill than current state-of-the-art methods. The explicit modeling of information flow via edges may also allow for more interpretable forecasts. Preliminary results are promising and outperform state-of-the art systems for projections 1 and 3 months ahead.