Abstract:This paper focuses on Passable Obstacles Aware (POA) planner - a novel navigation method for two-wheeled robots in a highly cluttered environment. The navigation algorithm detects and classifies objects to distinguish two types of obstacles - passable and unpassable. Our algorithm allows two-wheeled robots to find a path through passable obstacles. Such a solution helps the robot working in areas inaccessible to standard path planners and find optimal trajectories in scenarios with a high number of objects in the robot's vicinity. The POA planner can be embedded into other planning algorithms and enables them to build a path through obstacles. Our method decreases path length and the total travel time to the final destination up to 43% and 39%, respectively, comparing to standard path planners such as GVD, A*, and RRT*
Abstract:Aesthetics are critically important to market acceptance in many product categories. In the automotive industry in particular, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing new product aesthetics. A single automotive "theme clinic" costs between \$100,000 and \$1,000,000, and hundreds are conducted annually. We use machine learning to augment human judgment when designing and testing new product aesthetics. The model combines a probabilistic variational autoencoder (VAE) and adversarial components from generative adversarial networks (GAN), along with modeling assumptions that address managerial requirements for firm adoption. We train our model with data from an automotive partner-7,000 images evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs-38% improvement relative to a baseline and substantial improvement over both conventional machine learning models and pretrained deep learning models. New automotive designs are generated in a controllable manner for the design team to consider, which we also empirically verify are appealing to consumers. These results, combining human and machine inputs for practical managerial usage, suggest that machine learning offers significant opportunity to augment aesthetic design.