Abstract:Due to factors such as low population density and expansive geographical distances, network deployment falls behind in rural regions, leading to a broadband divide. Wireless spectrum serves as the blood and flesh of wireless communications. Shared white spaces such as those in the TVWS and CBRS spectrum bands offer opportunities to expand connectivity, innovate, and provide affordable access to high-speed Internet in under-served areas without additional cost to expensive licensed spectrum. However, the current methods to utilize these white spaces are inefficient due to very conservative models and spectrum policies, causing under-utilization of valuable spectrum resources. This hampers the full potential of innovative wireless technologies that could benefit farmers, small Internet Service Providers (ISPs) or Mobile Network Operators (MNOs) operating in rural regions. This study explores the challenges faced by farmers and service providers when using shared spectrum bands to deploy their networks while ensuring maximum system performance and minimizing interference with other users. Additionally, we discuss how spatiotemporal spectrum models, in conjunction with database-driven spectrum-sharing solutions, can enhance the allocation and management of spectrum resources, ultimately improving the efficiency and reliability of wireless networks operating in shared spectrum bands.
Abstract:Channel turbulence presents a formidable obstacle for free-space optical (FSO) communication. Anticipation of turbulence levels is highly important for mitigating disruptions. We study the application of machine learning (ML) to FSO data streams to rapidly predict channel turbulence levels with no additional sensing hardware. An optical bit stream was transmitted through a controlled channel in the lab under six distinct turbulence levels, and the efficacy of using ML to classify turbulence levels was examined. ML-based turbulence level classification was found to be >98% accurate with multiple ML training parameters, but highly dependent upon the timescale of changes between turbulence levels.
Abstract:The mushroom growth of cellular users requires novel advancements in the existing cellular infrastructure. One way to handle such a tremendous increase is to densely deploy terrestrial small-cell base stations (TSBSs) with careful management of smart backhaul/fronthaul networks. Nevertheless, terrestrial backhaul hubs significantly suffer from the dense fading environment and are difficult to install in a typical urban environment. Therefore, this paper considers the idea of replacing terrestrial backhaul network with an aerial network consisting of unmanned aerial vehicles (UAVs) to provide the fronthaul connectivity between the TSBSs and the ground core-network (GCN). To this end, we focus on the joint positioning of UAVs and the association of TSBSs such that the sum-rate of the overall system is maximized. In particular, the association problem of TSBSs with UAVs is formulated under communication-related constraints, i.e., bandwidth, number of connections to a UAV, power limit, interference threshold, UAV heights, and backhaul data rate. To meet this joint objective, we take advantage of the genetic algorithm (GA) due to the offline nature of our optimization problem. The performance of the proposed approach is evaluated using the unsupervised learning-based k-means clustering algorithm. We observe that the proposed approach is highly effective to satisfy the requirements of smart fronthaul networks.