Abstract:The increasing prevalence of Artificial Intelligence (AI) in safety-critical contexts such as air-traffic control leads to systems that are practical and efficient, and to some extent explainable to humans to be trusted and accepted. The present structured literature analysis examines n = 236 articles on the requirements for the explainability and acceptance of AI. Results include a comprehensive review of n = 48 articles on information people need to perceive an AI as explainable, the information needed to accept an AI, and representation and interaction methods promoting trust in an AI. Results indicate that the two main groups of users are developers who require information about the internal operations of the model and end users who require information about AI results or behavior. Users' information needs vary in specificity, complexity, and urgency and must consider context, domain knowledge, and the user's cognitive resources. The acceptance of AI systems depends on information about the system's functions and performance, privacy and ethical considerations, as well as goal-supporting information tailored to individual preferences and information to establish trust in the system. Information about the system's limitations and potential failures can increase acceptance and trust. Trusted interaction methods are human-like, including natural language, speech, text, and visual representations such as graphs, charts, and animations. Our results have significant implications for future human-centric AI systems being developed. Thus, they are suitable as input for further application-specific investigations of user needs.
Abstract:Once developed for quantum theory, tensor networks have been established as a successful machine learning paradigm. Now, they have been ported back to the quantum realm in the emerging field of quantum machine learning to assess problems that classical computers are unable to solve efficiently. Their nature at the interface between physics and machine learning makes tensor networks easily deployable on quantum computers. In this review article, we shed light on one of the major architectures considered to be predestined for variational quantum machine learning. In particular, we discuss how layouts like MPS, PEPS, TTNs and MERA can be mapped to a quantum computer, how they can be used for machine learning and data encoding and which implementation techniques improve their performance.