Abstract:Accurately detecting and tracking high-speed, small objects, such as balls in sports videos, is challenging due to factors like motion blur and occlusion. Although recent deep learning frameworks like TrackNetV1, V2, and V3 have advanced tennis ball and shuttlecock tracking, they often struggle in scenarios with partial occlusion or low visibility. This is primarily because these models rely heavily on visual features without explicitly incorporating motion information, which is crucial for precise tracking and trajectory prediction. In this paper, we introduce an enhancement to the TrackNet family by fusing high-level visual features with learnable motion attention maps through a motion-aware fusion mechanism, effectively emphasizing the moving ball's location and improving tracking performance. Our approach leverages frame differencing maps, modulated by a motion prompt layer, to highlight key motion regions over time. Experimental results on the tennis ball and shuttlecock datasets show that our method enhances the tracking performance of both TrackNetV2 and V3. We refer to our lightweight, plug-and-play solution, built on top of the existing TrackNet, as TrackNetV4.
Abstract:Industry surveillance is widely applicable in sectors like retail, manufacturing, education, and smart cities, each presenting unique anomalies requiring specialized detection. However, adapting anomaly detection models to novel viewpoints within the same scenario poses challenges. Extending these models to entirely new scenarios necessitates retraining or fine-tuning, a process that can be time consuming. To address these challenges, we propose the Scenario-Adaptive Anomaly Detection (SA2D) method, leveraging the few-shot learning framework for faster adaptation of pre-trained models to new concepts. Despite this approach, a significant challenge emerges from the absence of a comprehensive dataset with diverse scenarios and camera views. In response, we introduce the Multi-Scenario Anomaly Detection (MSAD) dataset, encompassing 14 distinct scenarios captured from various camera views. This real-world dataset is the first high-resolution anomaly detection dataset, offering a solid foundation for training superior models. MSAD includes diverse normal motion patterns, incorporating challenging variations like different lighting and weather conditions. Through experimentation, we validate the efficacy of SA2D, particularly when trained on the MSAD dataset. Our results show that SA2D not only excels under novel viewpoints within the same scenario but also demonstrates competitive performance when faced with entirely new scenarios. This highlights our method's potential in addressing challenges in detecting anomalies across diverse and evolving surveillance scenarios.