Abstract:Encoding 3D points is one of the primary steps in learning-based implicit scene representation. Using features that gather information from neighbors with multi-resolution grids has proven to be the best geometric encoder for this task. However, prior techniques do not exploit some characteristics of most objects or scenes, such as surface normals and local smoothness. This paper is the first to exploit those 3D characteristics in 3D geometric encoders explicitly. In contrast to prior work on using multiple levels of details, regular cube grids, and trilinear interpolation, we propose 3D-oriented grids with a novel cylindrical volumetric interpolation for modeling local planar invariance. In addition, we explicitly include a local feature aggregation for feature regularization and smoothing of the cylindrical interpolation features. We evaluate our approach on ABC, Thingi10k, ShapeNet, and Matterport3D, for object and scene representation. Compared to the use of regular grids, our geometric encoder is shown to converge in fewer steps and obtain sharper 3D surfaces. When compared to the prior techniques, our method gets state-of-the-art results.
Abstract:Single-Source Single-Target Domain Adaptation (1S1T) aims to bridge the gap between a labelled source domain and an unlabelled target domain. Despite 1S1T being a well-researched topic, they are typically not deployed to the real world. Methods like Multi-Source Domain Adaptation and Multi-Target Domain Adaptation have evolved to model real-world problems but still do not generalise well. The fact that most of these methods assume a common label-set between source and target is very restrictive. Recent Open-Set Domain Adaptation methods handle unknown target labels but fail to generalise in multiple domains. To overcome these difficulties, first, we propose a novel generic domain adaptation (DA) setting named Open-Set Multi-Source Multi-Target Domain Adaptation (OS-nSmT), with n and m being number of source and target domains respectively. Next, we propose a graph attention based framework named DEGAA which can capture information from multiple source and target domains without knowing the exact label-set of the target. We argue that our method, though offered for multiple sources and multiple targets, can also be agnostic to various other DA settings. To check the robustness and versatility of DEGAA, we put forward ample experiments and ablation studies.