Abstract:Providing high-quality video with efficient bitrate is a main challenge in video industry. The traditional one-size-fits-all scheme for bitrate ladders is inefficient and reaching the best content-aware decision computationally impractical due to extensive encodings required. To mitigate this, we propose a bitrate and complexity efficient bitrate ladder prediction method using transfer learning and spatio-temporal features. We propose: (1) using feature maps from well-known pre-trained DNNs to predict rate-quality behavior with limited training data; and (2) improving highest quality rung efficiency by predicting minimum bitrate for top quality and using it for the top rung. The method tested on 102 video scenes demonstrates 94.1% reduction in complexity versus brute-force at 1.71% BD-Rate expense. Additionally, transfer learning was thoroughly studied through four networks and ablation studies.