Abstract:As 3rd-person pronoun usage shifts to include novel forms, e.g., neopronouns, we need more research on identity-inclusive NLP. Exclusion is particularly harmful in one of the most popular NLP applications, machine translation (MT). Wrong pronoun translations can discriminate against marginalized groups, e.g., non-binary individuals (Dev et al., 2021). In this ``reality check'', we study how three commercial MT systems translate 3rd-person pronouns. Concretely, we compare the translations of gendered vs. gender-neutral pronouns from English to five other languages (Danish, Farsi, French, German, Italian), and vice versa, from Danish to English. Our error analysis shows that the presence of a gender-neutral pronoun often leads to grammatical and semantic translation errors. Similarly, gender neutrality is often not preserved. By surveying the opinions of affected native speakers from diverse languages, we provide recommendations to address the issue in future MT research.
Abstract:The world of pronouns is changing. From a closed class of words with few members to a much more open set of terms to reflect identities. However, Natural Language Processing (NLP) is barely reflecting this linguistic shift, even though recent work outlined the harms of gender-exclusive language technology. Particularly problematic is the current modeling 3rd person pronouns, as it largely ignores various phenomena like neopronouns, i.e., pronoun sets that are novel and not (yet) widely established. This omission contributes to the discrimination of marginalized and underrepresented groups, e.g., non-binary individuals. However, other identity-expression phenomena beyond gender are also ignored by current NLP technology. In this paper, we provide an overview of 3rd person pronoun issues for NLP. Based on our observations and ethical considerations, we define a series of desiderata for modeling pronouns in language technology. We evaluate existing and novel modeling approaches w.r.t. these desiderata qualitatively, and quantify the impact of a more discrimination-free approach on established benchmark data.