Abstract:Twitter is one of the top influenced social media which has a million number of active users. It is commonly used for microblogging that allows users to share messages, ideas, thoughts and many more. Thus, millions interaction such as short messages or tweets are flowing around among the twitter users discussing various topics that has been happening world-wide. This research aims to analyse a sentiment of the users towards a particular trending topic that has been actively and massively discussed at that time. We chose a hashtag \textit{\#kpujangancurang} that was the trending topic during the Indonesia presidential election in 2019. We use the hashtag to obtain a set of data from Twitter to analyse and investigate further the positive or the negative sentiment of the users from their tweets. This research utilizes rapid miner tool to generate the twitter data and comparing Naive Bayes, K-Nearest Neighbor, Decision Tree, and Multi-Layer Perceptron classification methods to classify the sentiment of the twitter data. There are overall 200 labeled data in this experiment. Overall, Naive Bayes and Multi-Layer Perceptron classification outperformed the other two methods on 11 experiments with different size of training-testing data split. The two classifiers are potential to be used in creating sentiment analyzer for low-resource languages with small corpus.
Abstract:Creating bilingual dictionary is the first crucial step in enriching low-resource languages. Especially for the closely-related ones, it has been shown that the constraint-based approach is useful for inducing bilingual lexicons from two bilingual dictionaries via the pivot language. However, if there are no available machine-readable dictionaries as input, we need to consider manual creation by bilingual native speakers. To reach a goal of comprehensively create multiple bilingual dictionaries, even if we already have several existing machine-readable bilingual dictionaries, it is still difficult to determine the execution order of the constraint-based approach to reducing the total cost. Plan optimization is crucial in composing the order of bilingual dictionaries creation with the consideration of the methods and their costs. We formalize the plan optimization for creating bilingual dictionaries by utilizing Markov Decision Process (MDP) with the goal to get a more accurate estimation of the most feasible optimal plan with the least total cost before fully implementing the constraint-based bilingual lexicon induction. We model a prior beta distribution of bilingual lexicon induction precision with language similarity and polysemy of the topology as $\alpha$ and $\beta$ parameters. It is further used to model cost function and state transition probability. We estimated the cost of all investment plan as a baseline for evaluating the proposed MDP-based approach with total cost as an evaluation metric. After utilizing the posterior beta distribution in the first batch of experiments to construct the prior beta distribution in the second batch of experiments, the result shows 61.5\% of cost reduction compared to the estimated all investment plan and 39.4\% of cost reduction compared to the estimated MDP optimal plan. The MDP-based proposal outperformed the baseline on the total cost.
Abstract:The lack or absence of parallel and comparable corpora makes bilingual lexicon extraction a difficult task for low-resource languages. The pivot language and cognate recognition approaches have been proven useful for inducing bilingual lexicons for such languages. We propose constraint-based bilingual lexicon induction for closely-related languages by extending constraints from the recent pivot-based induction technique and further enabling multiple symmetry assumption cycles to reach many more cognates in the transgraph. We further identify cognate synonyms to obtain many-to-many translation pairs. This paper utilizes four datasets: one Austronesian low-resource language and three Indo-European high-resource languages. We use three constraint-based methods from our previous work, the Inverse Consultation method and translation pairs generated from the Cartesian product of input dictionaries as baselines. We evaluate our result using the metrics of precision, recall and F-score. Our customizable approach allows the user to conduct cross-validation to predict the optimal hyperparameters (cognate threshold and cognate synonym threshold) with various combinations of heuristics and the number of symmetry assumption cycles to gain the highest F-score. Our proposed methods have statistically significant improvement of precision and F-score compared to our previous constraint-based methods. The results show that our method demonstrates the potential to complement other bilingual dictionary creation methods like word alignment models using parallel corpora for high-resource languages while well handling low-resource languages.