Abstract:Power grids are critical infrastructures of paramount importance to modern society and their rapid evolution and interconnections has heightened the complexity of power systems (PS) operations. Traditional methods for grid analysis struggle with the computational demands of large-scale RES and ES integration, prompting the adoption of machine learning (ML) techniques, particularly Graph Neural Networks (GNNs). GNNs have proven effective in solving the alternating current (AC) Power Flow (PF) and Optimal Power Flow (OPF) problems, crucial for operational planning. However, existing benchmarks and datasets completely ignore safety and robustness requirements in their evaluation and never consider realistic safety-critical scenarios that most impact the operations of the power grids. We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for GNNs in PS operations. SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages. Our extensive experiments underscore the importance of self-supervised learning and graph attention architectures for GNN robustness. We provide at https://github.com/yamizi/SafePowerGraph our open-source repository, a comprehensive leaderboard, a dataset and model zoo and expect our framework to standardize and advance research in the critical field of GNN for power systems.
Abstract:Efficiently solving unbalanced three-phase power flow in distribution grids is pivotal for grid analysis and simulation. There is a pressing need for scalable algorithms capable of handling large-scale unbalanced power grids that can provide accurate and fast solutions. To address this, deep learning techniques, especially Graph Neural Networks (GNNs), have emerged. However, existing literature primarily focuses on balanced networks, leaving a critical gap in supporting unbalanced three-phase power grids. This letter introduces PowerFlowMultiNet, a novel multigraph GNN framework explicitly designed for unbalanced three-phase power grids. The proposed approach models each phase separately in a multigraph representation, effectively capturing the inherent asymmetry in unbalanced grids. A graph embedding mechanism utilizing message passing is introduced to capture spatial dependencies within the power system network. PowerFlowMultiNet outperforms traditional methods and other deep learning approaches in terms of accuracy and computational speed. Rigorous testing reveals significantly lower error rates and a notable hundredfold increase in computational speed for large power networks compared to model-based methods.