Abstract:This paper addresses the problem of uplink transmit power optimization in distributed massive multiple-input multiple-output systems, where remote radio heads (RRHs) are equipped with 1-bit analog-to-digital converters (ADCs). First, in a scenario where a single RRH serves a single user equipment (UE), the signal-to-noise-and-distortion ratio (SNDR) is shown to be a non-monotonic and unimodal function of the UE transmit power due to the quantization distortion (QD). Upon the introduction of multiple RRHs, adding properly tuned dithering at each RRH is shown to render the SNDR at the output of the joint receiver unimodal. In a scenario with multiple RRHs and UEs, considering the non-monotonic nature of the signal-to-interference-plus-noise-and-distortion ratio (SINDR), both the UE transmit powers and the RRH dithering levels are jointly optimized subject to the min-power and max-min-SINDR criteria, while employing Bussgang-based maximum ratio combining (BMRC) and minimum mean squared error (BMMSE) receivers. To this end, gradient and block coordinate descent methods are introduced to tune the UE transmit powers, whereas a line search coupled with gradient updates is used to adjust the RRH dithering levels. Numerical results demonstrate that jointly optimizing the UE transmit power and the RRH dithering levels can significantly enhance the system performance, thus facilitating joint reception from multiple RRHs across a range of scenarios. Comparing the BMMSE and BMRC receivers, the former offers a better interference and QD alleviation while the latter has a lower computational complexity.
Abstract:Integrating coded caching (CC) into multiple-input multiple-output (MIMO) communications may significantly enhance the achievable degrees of freedom (DoF) of the wireless networks. In this paper, we consider a cache-aided MIMO configuration with a CC gain $t$, where a server with $L$ Tx antennas communicates with $K$ users, each with $G$ Rx antennas. In the proposed content-aware MIMO strategy, we carefully adjust the number of users $\Omega$ and the number of parallel streams decoded by each user $\beta$ served in each transmission to maximize the DoF. As a result, we achieve a DoF of ${\max_{\beta, \Omega }}{\Omega \beta}$, where ${\beta \le \mathrm{min}\big(G,\frac{L \binom{\Omega-1}{t}}{1 + (\Omega - t-1)\binom{\Omega-1}{t}}\big)}$. To prove the achievability of the proposed DoF bound, we provide a novel transmission strategy based on the simultaneous unicasting of multiple data streams. In this strategy, the missing data packets are scheduled such that the number of parallel streams per transmission is maximized while the decodability of all useful terms by each target user is guaranteed. Numerical simulations validate the findings, confirming the enhanced DoF and improved performance of the proposed design.
Abstract:In this paper, we study the optimality of the Bussgang linear minimum mean squared error (BLMMSE) channel estimator for multiple-input multiple-output systems with 1-bit analog-to-digital converters. We compare the BLMMSE with the optimal minimum mean squared error (MMSE) channel estimator, which is generally non-linear, and we develop a novel framework based on the orthant probability of a multivariate normal distribution to compute the MMSE channel estimate. Then, we analyze the equivalence of the MMSE and BLMMSE channel estimators under specific assumptions on the channel correlation or pilot symbols. Interestingly, the BLMMSE channel estimator turns out to be optimal in several specific cases. Our study culminates with the presentation of a necessary and sufficient condition for the BLMMSE channel estimator to be optimal.
Abstract:This paper focuses on the minimum mean squared error (MMSE) channel estimator for multiple-input multiple-output (MIMO) systems with one-bit quantization at the receiver side. Despite its optimality and significance in estimation theory, the MMSE channel estimator has not been fully investigated in this context due to its general non-linearity and computational complexity. Instead, the typically suboptimal Bussgang linear MMSE (BLMMSE) estimator has been widely adopted. In this work, we develop a new framework to compute the MMSE channel estimator that hinges on computation of the orthant probability of the multivariate normal distribution. Based on this framework, we determine a necessary and sufficient condition for the BLMMSE channel estimator to be optimal and equivalent to the MMSE estimator. Under the assumption of specific channel correlation or pilot symbols, we further utilize the framework to derive analytical expressions for the MMSE channel estimator that are particularly convenient for computation when certain system dimensions become large, thereby enabling a comparison between the BLMMSE and MMSE channel estimators in these cases.
Abstract:We consider a cell-free massive multiple-input multiple-output system with multi-antenna access points (APs) and user equipments (UEs), where the UEs can be served in both the downlink (DL) and uplink (UL) within a resource block. We tackle the combined optimization of the DL precoders and combiners at the APs and DL UEs, respectively, together with the UL combiners and precoders at the APs and UL UEs, respectively. To this end, we propose distributed beamforming designs enabled by iterative bi-directional training (IBT) and based on the minimum mean squared error criterion. To reduce the IBT overhead and thus enhance the effective DL and UL rates, we carry out the distributed beamforming design by assuming that all the UEs are served solely in the DL and then utilize the obtained beamformers for the DL and UL data transmissions after proper scaling. Numerical results show the superiority of the proposed combined DL-UL distributed beamforming design over separate DL and UL designs, especially with short resource blocks.
Abstract:A practical and scalable multicast beamformer design in multi-input multi-output~(MIMO) coded caching~(CC) systems is introduced in this paper. The proposed approach allows multicast transmission to multiple groups with partially overlapping user sets using receiver dimensions to distinguish between different group-specific streams. Additionally, it provides flexibility in accommodating various parameter configurations of the MIMO-CC setup and overcomes practical limitations, such as the requirement to use successive interference cancellation~(SIC) at the receiver, while achieving the same degrees-of-freedom~(DoF). To evaluate the proposed scheme, we define the symmetric rate as the sum rate of the partially overlapping streams received per user, comprising a linear multistream multicast transmission vector and the linear minimum mean square error~(LMMSE) receiver. The resulting non-convex symmetric rate maximization problem is solved using alternative optimization and successive convex approximation~(SCA). Moreover, a fast iterative Lagrangian-based algorithm is developed, significantly reducing the computational overhead compared to previous designs. The effectiveness of our proposed method is demonstrated by extensive simulations.
Abstract:Enabling communications in the (sub-)THz band will call for massive multiple-input multiple-output (MIMO) arrays at either the transmit- or receive-side, or at both. To scale down the complexity and power consumption when operating across massive frequency and antenna dimensions, a sacrifice in the resolution of the digital-to-analog/analog-to-digital converters (DACs/ADCs) will be inevitable. In this paper, we analyze the extreme scenario where both the transmit- and receive-side are equipped with fully digital massive MIMO arrays and 1-bit DACs/ADCs, which leads to a system with minimum radio-frequency complexity, cost, and power consumption. Building upon the Bussgang decomposition, we derive a tractable approximation of the mean squared error (MSE) between the transmitted data symbols and their soft estimates. Numerical results show that, despite its simplicity, a doubly 1-bit quantized massive MIMO system with very large antenna arrays can deliver an impressive performance in terms of MSE and symbol error rate.
Abstract:We propose uplink power control (PC) methods for massive multiple-input multiple-output systems with 1-bit analog-to-digital converters, which are specifically tailored to address the non-monotonic data detection performance with respect to the transmit power of the user equipment (UE). Considering a single UE, we design a multi-amplitude pilot sequence to capture the aforementioned non-monotonicity, which is utilized at the base station to derive UE transmit power adjustments via single-shot or differential power control (DPC) techniques. Both methods enable closed-loop uplink PC using different feedback approaches. The single-shot method employs one-time multi-bit feedback, while the DPC method relies on continuous adjustments with 1-bit feedback. Numerical results demonstrate the superiority of the proposed schemes over conventional closed-loop uplink PC techniques.
Abstract:We consider the problem of uplink power control for distributed massive multiple-input multiple-output systems where the base stations (BSs) are equipped with 1-bit analog-to-digital converters (ADCs). The scenario with a single-user equipment (UE) is first considered to provide insights into the signal-tonoise-and-distortion ratio (SNDR). With a single BS, the SNDR is a unimodal function of the UE transmit power. With multiple BSs, the SNDR at the output of the joint combiner can be made unimodal by adding properly tuned dithering at each BS. As a result, the UE can be effectively served by multiple BSs with 1-bit ADCs. Considering the signal-to-interference-plus-noise-anddistortion ratio (SINDR) in the multi-UE scenario, we aim at optimizing the UE transmit powers and the dithering at each BS based on the min-power and max-min-SINDR criteria. To this end, we propose three algorithms with different convergence and complexity properties. Numerical results show that, if the desired SINDR can only be achieved via joint combining across multiple BSs with properly tuned dithering, the optimal UE transmit power is imposed by the distance to the farthest serving BS (unlike in the unquantized case). In this context, dithering plays a crucial role in enhancing the SINDR, especially for UEs with significant path loss disparity among the serving BSs.
Abstract:We provide new analytical results on the uplink data detection in massive multiple-input multiple-output systems with 1-bit analog-to-digital converters. The statistical properties of the soft-estimated symbols (i.e., after linear combining and prior to the data detection process) have been previously characterized only for a single user equipment (UE) and uncorrelated Rayleigh fading. In this paper, we consider a multi-UE setting with correlated Rayleigh fading, where the soft-estimated symbols are obtained by means of maximum ratio combining based on imperfectly estimated channels. We derive a closed-form expression of the expected value of the soft-estimated symbols, which allows to understand the impact of the specific data symbols transmitted by the interfering UEs. Building on this result, we design efficient data detection strategies based on the minimum distance criterion, which are compared in terms of symbol error rate and complexity.