Abstract:We propose a new framework for image classification with deep neural networks. The framework introduces intermediate outputs to the computational graph of a network. This enables flexible control of the computational load and balances the tradeoff between accuracy and execution time. Moreover, we present an interesting finding that the intermediate outputs can act as a regularizer at training time, improving the prediction accuracy. In the experimental section we demonstrate the performance of our proposed framework with various commonly used pretrained deep networks in the use case of apparent age estimation.
Abstract:In this paper we study the real time deployment of deep learning algorithms in low resource computational environments. As the use case, we compare the accuracy and speed of neural networks for smile detection using different neural network architectures and their system level implementation on NVidia Jetson embedded platform. We also propose an asynchronous multithreading scheme for parallelizing the pipeline. Within this framework, we experimentally compare thirteen widely used network topologies. The experiments show that low complexity architectures can achieve almost equal performance as larger ones, with a fraction of computation required.