Abstract:We consider the expected runtime of non-elitist evolutionary algorithms (EAs), when they are applied to a family of fitness functions with a plateau of second-best fitness in a Hamming ball of radius r around a unique global optimum. On one hand, using the level-based theorems, we obtain polynomial upper bounds on the expected runtime for some modes of non-elitist EA based on unbiased mutation and the bitwise mutation in particular. On the other hand, we show that the EA with fitness proportionate selection is inefficient if the bitwise mutation is used with the standard settings of mutation probability.
Abstract:This manuscript contains an outline of lectures course "Evolutionary Algorithms" read by the author in Omsk State University n.a. F.M.Dostoevsky. The course covers Canonic Genetic Algorithm and various other genetic algorithms as well as evolutionary strategies, genetic programming, tabu search and the class of evolutionary algorithms in general. Some facts, such as the Rotation Property of crossover, the Schemata Theorem, GA performance as a local search and "almost surely" convergence of evolutionary algorithms are given with complete proofs. The text is in Russian.
Abstract:In this paper, we consider the problem of finding a maximum cardinality subset of vectors, given a constraint on the normalized squared length of vectors sum. This problem is closely related to Problem 1 from (Eremeev, Kel'manov, Pyatkin, 2016). The main difference consists in swapping the constraint with the optimization criterion. We prove that the problem is NP-hard even in terms of finding a feasible solution. An exact algorithm for solving this problem is proposed. The algorithm has a pseudo-polynomial time complexity in the special case of the problem, where the dimension of the space is bounded from above by a constant and the input data are integer. A computational experiment is carried out, where the proposed algorithm is compared to COINBONMIN solver, applied to a mixed integer quadratic programming formulation of the problem. The results of the experiment indicate superiority of the proposed algorithm when the dimension of Euclidean space is low, while the COINBONMIN has an advantage for larger dimensions.
Abstract:Understanding how the time-complexity of evolutionary algorithms (EAs) depend on their parameter settings and characteristics of fitness landscapes is a fundamental problem in evolutionary computation. Most rigorous results were derived using a handful of key analytic techniques, including drift analysis. However, since few of these techniques apply effortlessly to population-based EAs, most time-complexity results concern simplified EAs, such as the (1+1) EA. This paper describes the level-based theorem, a new technique tailored to population-based processes. It applies to any non-elitist process where offspring are sampled independently from a distribution depending only on the current population. Given conditions on this distribution, our technique provides upper bounds on the expected time until the process reaches a target state. We demonstrate the technique on several pseudo-Boolean functions, the sorting problem, and approximation of optimal solutions in combinatorial optimisation. The conditions of the theorem are often straightforward to verify, even for Genetic Algorithms and Estimation of Distribution Algorithms which were considered highly non-trivial to analyse. Finally, we prove that the theorem is nearly optimal for the processes considered. Given the information the theorem requires about the process, a much tighter bound cannot be proved.
Abstract:The paper is devoted to upper bounds on run-time of Non-Elitist Genetic Algorithms until some target subset of solutions is visited for the first time. In particular, we consider the sets of optimal solutions and the sets of local optima as the target subsets. Previously known upper bounds are improved by means of drift analysis. Finally, we propose conditions ensuring that a Non-Elitist Genetic Algorithm efficiently finds approximate solutions with constant approximation ratio on the class of combinatorial optimization problems with guaranteed local optima (GLO).
Abstract:This paper surveys results on complexity of the optimal recombination problem (ORP), which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results.