Abstract:The increasing demand for data usage in wireless communications requires using wider bands in the spectrum, especially for backhaul links. Yet, allocations in the spectrum for non-communication systems inhibit merging bands to achieve wider bandwidth. To overcome this issue, spectrum-sharing or opportunistic spectrum utilization by secondary users stands out as a promising solution. However, both approaches must minimize interference to primary users. Therefore, spectrum sensing becomes vital for such opportunistic usage, ensuring the proper operation of the primary users. Although this problem has been investigated for 2D networks, unmanned aerial vehicle (UAV) networks need different points of view concerning 3D space, its challenges, and opportunities. For this purpose, we propose a federated learning (FL)-based method for spectrum sensing in UAV networks to account for their distributed nature and limited computational capacity. FL enables local training without sharing raw data while guaranteeing the privacy of local users,lowering communication overhead, and increasing data diversity. Furthermore, we develop a federated aggregation method, namely FedSNR, that considers the signal-to-noise ratio observed by UAVs to acquire a global model. The numerical results show that the proposed architecture and the aggregation method outperform traditional methods.
Abstract:In this work, we present a new unsupervised anomaly (outlier) detection (AD) method using the sliced-Wasserstein metric. This filtering technique is conceptually interesting for integration in MLOps pipelines deploying trustworthy machine learning models in critical sectors like energy. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We demonstrate the capabilities of our method on synthetic datasets as well as standard AD datasets and use it in the making of a first benchmark for our open-source localized critical peak rebate dataset.
Abstract:The rise in low Earth orbit (LEO) satellite Internet services has led to increasing demand, often exceeding available data rates and compromising the quality of service. While deploying more satellites offers a short-term fix, designing higher-performance satellites with enhanced transmission capabilities provides a more sustainable solution. Achieving the necessary high capacity requires interconnecting multiple modem banks within a satellite payload. However, there is a notable gap in research on internal packet routing within extremely high-throughput satellites. To address this, we propose a real-time optimal flow allocation and priority queue scheduling method using online convex optimization-based model predictive control. We model the problem as a multi-commodity flow instance and employ an online interior-point method to solve the routing and scheduling optimization iteratively. This approach minimizes packet loss and supports real-time rerouting with low computational overhead. Our method is tested in simulation on a next-generation extremely high-throughput satellite model, demonstrating its effectiveness compared to a reference batch optimization and to traditional methods.
Abstract:In this work, we propose Wasserstein distributionally robust shallow convex neural networks (WaDiRo-SCNNs) to provide reliable nonlinear predictions when subject to adverse and corrupted datasets. Our approach is based on a new convex training program for ReLU shallow neural networks which allows us to cast the problem as an exact, tractable reformulation of its order-1 Wasserstein distributionally robust equivalent. Our training procedure is conservative by design, has low stochasticity, is solvable with open-source solvers, and is scalable to large industrial deployments. We provide out-of-sample performance guarantees and show that hard convex physical constraints can be enforced in the training program. WaDiRo-SCNN aims to make neural networks safer for critical applications, such as in the energy sector. Finally, we numerically demonstrate the performance of our model on a synthetic experiment and a real-world power system application, i.e., the prediction of non-residential buildings' hourly energy consumption. The experimental results are convincing and showcase the strengths of the proposed model.
Abstract:This paper addresses the limitations of current satellite payload architectures, which are predominantly hardware-driven and lack the flexibility to adapt to increasing data demands and uneven traffic. To overcome these challenges, we present a novel architecture for future regenerative and programmable satellite payloads and utilize interconnected modem banks to promote higher scalability and flexibility. We formulate an optimization problem to efficiently manage traffic among these modem banks and balance the load. Additionally, we provide comparative numerical simulation results, considering end-to-end delay and packet loss analysis. The results illustrate that our proposed architecture maintains lower delays and packet loss even with higher traffic demands and smaller buffer sizes.
Abstract:Model predictive control (MPC) has been shown to significantly improve the energy efficiency of buildings while maintaining thermal comfort. Data-driven approaches based on neural networks have been proposed to facilitate system modelling. However, such approaches are generally nonconvex and result in computationally intractable optimization problems. In this work, we design a readily implementable energy management method for small commercial buildings. We then leverage our approach to formulate a real-time demand bidding strategy. We propose a data-driven and mixed-integer convex MPC which is solved via derivative-free optimization given a limited computational time of 5 minutes to respect operational constraints. We consider rooftop unit heating, ventilation, and air conditioning systems with discrete controls to accurately model the operation of most commercial buildings. Our approach uses an input convex recurrent neural network to model the thermal dynamics. We apply our approach in several demand response (DR) settings, including a demand bidding, a time-of-use, and a critical peak rebate program. Controller performance is evaluated on a state-of-the-art building simulation. The proposed approach improves thermal comfort while reducing energy consumption and cost through DR participation, when compared to other data-driven approaches or a set-point controller.
Abstract:Thousands of satellites, asteroids, and rocket bodies break, collide, or degrade, resulting in large amounts of space debris in low Earth orbit. The presence of space debris poses a serious threat to satellite mega-constellations and to future space missions. Debris can be avoided if detected within the safety range of a satellite. In this paper, an integrated sensing and communication technique is proposed to detect space debris for satellite mega-constellations. The canonical polyadic (CP) tensor decomposition method is used to estimate the rank of the tensor that denotes the number of paths including line-of-sight and non-line-of-sight by exploiting the sparsity of THz channel with limited scattering. The analysis reveals that the reflected signals of the THz can be utilized for the detection of space debris. The CP decomposition is cast as an optimization problem and solved using the alternating least square (ALS) algorithm. Simulation results show that the probability of detection of the proposed tensor-based scheme is higher than the conventional energy-based detection scheme for the space debris detection.
Abstract:High Throughput Satellites (HTSs) outpace traditional satellites due to their multi-beam transmission. The rise of low Earth orbit mega constellations amplifies HTS data rate demands to terabits/second with acceptable latency. This surge in data rate necessitates multiple modems, often exceeding single device capabilities. Consequently, satellites employ several processors, forming a complex packet-switch network. This can lead to potential internal congestion and challenges in adhering to strict quality of service (QoS) constraints. While significant research exists on constellation-level routing, a literature gap remains on the internal routing within a singular HTS. The intricacy of this internal network architecture presents a significant challenge to achieve high data rates. This paper introduces an online optimal flow allocation and scheduling method for HTSs. The problem is treated as a multi-commodity flow instance with different priority data streams. An initial full time horizon model is proposed as a benchmark. We apply a model predictive control (MPC) approach to enable adaptive routing based on current information and the forecast within the prediction time horizon while allowing for deviation of the latter. Importantly, MPC is inherently suited to handle uncertainty in incoming flows. Our approach minimizes packet loss by optimally and adaptively managing the priority queue schedulers and flow exchanges between satellite processing modules. Central to our method is a routing model focusing on optimal priority scheduling to enhance data rates and maintain QoS. The model's stages are critically evaluated, and results are compared to traditional methods via numerical simulations. Through simulations, our method demonstrates performance nearly on par with the hindsight optimum, showcasing its efficiency and adaptability in addressing satellite communication challenges.
Abstract:High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture.
Abstract:We propose new algorithms with provable performance for online binary optimization subject to general constraints and in dynamic settings. We consider the subset of problems in which the objective function is submodular. We propose the online submodular greedy algorithm (OSGA) which solves to optimality an approximation of the previous round's loss function to avoid the NP-hardness of the original problem. We extend OSGA to a generic approximation function. We show that OSGA has a dynamic regret bound similar to the tightest bounds in online convex optimization. For instances where no approximation exists or a computationally simpler implementation is desired, we design the online submodular projected gradient descent (OSPGD) by leveraging the Lov\'asz extension. We obtain a regret bound that is akin to the conventional online gradient descent (OGD). Finally, we numerically test our algorithms in two power system applications: fast-timescale demand response and real-time distribution network reconfiguration.