Abstract:The exponential increase in the parameters of Deep Neural Networks (DNNs) has significantly raised the cost of independent training, particularly for resource-constrained entities. As a result, there is a growing reliance on open-source models. However, the opacity of training processes exacerbates security risks, making these models more vulnerable to malicious threats, such as backdoor attacks, while simultaneously complicating defense mechanisms. Merging homogeneous models has gained attention as a cost-effective post-training defense. However, we notice that existing strategies, such as weight averaging, only partially mitigate the influence of poisoned parameters and remain ineffective in disrupting the pervasive spurious correlations embedded across model parameters. We propose a novel module-switching strategy to break such spurious correlations within the model's propagation path. By leveraging evolutionary algorithms to optimize fusion strategies, we validate our approach against backdoor attacks targeting text and vision domains. Our method achieves effective backdoor mitigation even when incorporating a couple of compromised models, e.g., reducing the average attack success rate (ASR) to 22% compared to 31.9% with the best-performing baseline on SST-2.
Abstract:The democratization of pre-trained language models through open-source initiatives has rapidly advanced innovation and expanded access to cutting-edge technologies. However, this openness also brings significant security risks, including backdoor attacks, where hidden malicious behaviors are triggered by specific inputs, compromising natural language processing (NLP) system integrity and reliability. This paper suggests that merging a backdoored model with other homogeneous models can remediate backdoor vulnerabilities even if such models are not entirely secure. In our experiments, we explore various models (BERT-Base, RoBERTa-Large, Llama2-7B, and Mistral-7B) and datasets (SST-2, OLID, AG News, and QNLI). Compared to multiple advanced defensive approaches, our method offers an effective and efficient inference-stage defense against backdoor attacks without additional resources or specific knowledge. Our approach consistently outperforms the other advanced baselines, leading to an average of 75% reduction in the attack success rate. Since model merging has been an established approach for improving model performance, the extra advantage it provides regarding defense can be seen as a cost-free bonus.