Abstract:This paper presents the key algorithmic techniques behind CatBoost, a new gradient boosting toolkit. Their combination leads to CatBoost outperforming other publicly available boosting implementations in terms of quality on a variety of datasets. Two critical algorithmic advances introduced in CatBoost are the implementation of ordered boosting, a permutation-driven alternative to the classic algorithm, and an innovative algorithm for processing categorical features. Both techniques were created to fight a prediction shift caused by a special kind of target leakage present in all currently existing implementations of gradient boosting algorithms. In this paper, we provide a detailed analysis of this problem and demonstrate that proposed algorithms solve it effectively, leading to excellent empirical results.
Abstract:This article provides a comprehensive study of different ways to make speed benchmarks of gradient boosted decision trees algorithm. We show main problems of several straight forward ways to make benchmarks, explain, why a speed benchmarking is a challenging task and provide a set of reasonable requirements for a benchmark to be fair and useful.
Abstract:In this paper we present CatBoost, a new open-sourced gradient boosting library that successfully handles categorical features and outperforms existing publicly available implementations of gradient boosting in terms of quality on a set of popular publicly available datasets. The library has a GPU implementation of learning algorithm and a CPU implementation of scoring algorithm, which are significantly faster than other gradient boosting libraries on ensembles of similar sizes.