Abstract:This article provides a comprehensive study of different ways to make speed benchmarks of gradient boosted decision trees algorithm. We show main problems of several straight forward ways to make benchmarks, explain, why a speed benchmarking is a challenging task and provide a set of reasonable requirements for a benchmark to be fair and useful.
Abstract:In this paper we present CatBoost, a new open-sourced gradient boosting library that successfully handles categorical features and outperforms existing publicly available implementations of gradient boosting in terms of quality on a set of popular publicly available datasets. The library has a GPU implementation of learning algorithm and a CPU implementation of scoring algorithm, which are significantly faster than other gradient boosting libraries on ensembles of similar sizes.