LPSM, SU
Abstract:This paper addresses nonparametric estimation of nonlinear multivariate Hawkes processes, where the interaction functions are assumed to lie in a reproducing kernel Hilbert space (RKHS). Motivated by applications in neuroscience, the model allows complex interaction functions, in order to express exciting and inhibiting effects, but also a combination of both (which is particularly interesting to model the refractory period of neurons), and considers in return that conditional intensities are rectified by the ReLU function. The latter feature incurs several methodological challenges, for which workarounds are proposed in this paper. In particular, it is shown that a representer theorem can be obtained for approximated versions of the log-likelihood and the least-squares criteria. Based on it, we propose an estimation method, that relies on two simple approximations (of the ReLU function and of the integral operator). We provide an approximation bound, justifying the negligible statistical effect of these approximations. Numerical results on synthetic data confirm this fact as well as the good asymptotic behavior of the proposed estimator. It also shows that our method achieves a better performance compared to related nonparametric estimation techniques and suits neuronal applications.
Abstract:When studying ecosystems, hierarchical trees are often used to organize entities based on proximity criteria, such as the taxonomy in microbiology, social classes in geography, or product types in retail businesses, offering valuable insights into entity relationships. Despite their significance, current count-data models do not leverage this structured information. In particular, the widely used Poisson log-normal (PLN) model, known for its ability to model interactions between entities from count data, lacks the possibility to incorporate such hierarchical tree structures, limiting its applicability in domains characterized by such complexities. To address this matter, we introduce the PLN-Tree model as an extension of the PLN model, specifically designed for modeling hierarchical count data. By integrating structured variational inference techniques, we propose an adapted training procedure and establish identifiability results, enhancisng both theoretical foundations and practical interpretability. Additionally, we extend our framework to classification tasks as a preprocessing pipeline, showcasing its versatility. Experimental evaluations on synthetic datasets as well as real-world microbiome data demonstrate the superior performance of the PLN-Tree model in capturing hierarchical dependencies and providing valuable insights into complex data structures, showing the practical interest of knowledge graphs like the taxonomy in ecosystems modeling.
Abstract:In this paper, we present a maximum likelihood method for estimating the parameters of a univariate Hawkes process with self-excitation or inhibition. Our work generalizes techniques and results that were restricted to the self-exciting scenario. The proposed estimator is implemented for the classical exponential kernel and we show that, in the inhibition context, our procedure provides more accurate estimations than current alternative approaches.