Abstract:This paper introduces a novel anomaly detection (AD) problem that focuses on identifying `odd-looking' objects relative to the other instances within a scene. Unlike the traditional AD benchmarks, in our setting, anomalies in this context are scene-specific, defined by the regular instances that make up the majority. Since object instances are often partly visible from a single viewpoint, our setting provides multiple views of each scene as input. To provide a testbed for future research in this task, we introduce two benchmarks, ToysAD-8K and PartsAD-15K. We propose a novel method that generates 3D object-centric representations for each instance and detects the anomalous ones through a cross-examination between the instances. We rigorously analyze our method quantitatively and qualitatively in the presented benchmarks.
Abstract:Automatic anomaly detection based on visual cues holds practical significance in various domains, such as manufacturing and product quality assessment. This paper introduces a new conditional anomaly detection problem, which involves identifying anomalies in a query image by comparing it to a reference shape. To address this challenge, we have created a large dataset, BrokenChairs-180K, consisting of around 180K images, with diverse anomalies, geometries, and textures paired with 8,143 reference 3D shapes. To tackle this task, we have proposed a novel transformer-based approach that explicitly learns the correspondence between the query image and reference 3D shape via feature alignment and leverages a customized attention mechanism for anomaly detection. Our approach has been rigorously evaluated through comprehensive experiments, serving as a benchmark for future research in this domain.