Abstract:Videos can be an effective way to deliver contextualized, just-in-time medical information for patient education. However, video analysis, from topic identification and retrieval to extraction and analysis of medical information and understandability from a patient perspective are extremely challenging tasks. This study demonstrates a data analysis pipeline that utilizes methods to retrieve medical information from YouTube videos on preparing for a colonoscopy exam, a much maligned and disliked procedure that patients find challenging to get adequately prepared for. We first use the YouTube Data API to collect metadata of desired videos on select search keywords and use Google Video Intelligence API to analyze texts, frames and objects data. Then we annotate the YouTube video materials on medical information, video understandability and overall recommendation. We develop a bidirectional long short-term memory (BiLSTM) model to identify medical terms in videos and build three classifiers to group videos based on the levels of encoded medical information and video understandability, and whether the videos are recommended or not. Our study provides healthcare stakeholders with guidelines and a scalable approach for generating new educational video content to enhance management of a vast number of health conditions.
Abstract:Studies suggest that one in three US adults use the Internet to diagnose or learn about a health concern. However, such access to health information online could exacerbate the disparities in health information availability and use. Health information seeking behavior (HISB) refers to the ways in which individuals seek information about their health, risks, illnesses, and health-protective behaviors. For patients engaging in searches for health information on digital media platforms, health literacy divides can be exacerbated both by their own lack of knowledge and by algorithmic recommendations, with results that disproportionately impact disadvantaged populations, minorities, and low health literacy users. This study reports on an exploratory investigation of the above challenges by examining whether responsible and representative recommendations can be generated using advanced analytic methods applied to a large corpus of videos and their metadata on a chronic condition (diabetes) from the YouTube social media platform. The paper focusses on biases associated with demographic characters of actors using videos on diabetes that were retrieved and curated for multiple criteria such as encoded medical content and their understandability to address patient education and population health literacy needs. This approach offers an immense opportunity for innovation in human-in-the-loop, augmented-intelligence, bias-aware and responsible algorithmic recommendations by combining the perspectives of health professionals and patients into a scalable and generalizable machine learning framework for patient empowerment and improved health outcomes.
Abstract:YouTube presents an unprecedented opportunity to explore how machine learning methods can improve healthcare information dissemination. We propose an interdisciplinary lens that synthesizes machine learning methods with healthcare informatics themes to address the critical issue of developing a scalable algorithmic solution to evaluate videos from a health literacy and patient education perspective. We develop a deep learning method to understand the level of medical knowledge encoded in YouTube videos. Preliminary results suggest that we can extract medical knowledge from YouTube videos and classify videos according to the embedded knowledge with satisfying performance. Deep learning methods show great promise in knowledge extraction, natural language understanding, and image classification, especially in an era of patient-centric care and precision medicine.