Abstract:In this paper, we discuss the formalized approach for generating and estimating symbols (and alphabets), which can be communicated by the wide range of non-verbal means based on specific user requirements (medium, priorities, type of information that needs to be conveyed). The short characterization of basic terms and parameters of such symbols (and alphabets) with approaches to generate them are given. Then the framework, experimental setup, and some machine learning methods to estimate usefulness and effectiveness of the nonverbal alphabets and systems are presented. The previous results demonstrate that usage of multimodal data sources (like wearable accelerometer, heart monitor, muscle movements sensors, braincomputer interface) along with machine learning approaches can provide the deeper understanding of the usefulness and effectiveness of such alphabets and systems for nonverbal and situated communication. The symbols (and alphabets) generated and estimated by such methods may be useful in various applications: from synthetic languages and constructed scripts to multimodal nonverbal and situated interaction between people and artificial intelligence systems through Human-Computer Interfaces, such as mouse gestures, touchpads, body gestures, eyetracking cameras, wearables, and brain-computing interfaces, especially in applications for elderly care and people with disabilities.
Abstract:In this progress paper the previous results of the single note recognition by deep learning are presented. The several ways for data augmentation and "artificial semantic" augmentation are proposed to enhance efficiency of deep learning approaches for monophonic and polyphonic note recognition by increase of dimensions of training data, their lossless and lossy transformations.
Abstract:In this paper, we discuss the generation of symbols (and alphabets) based on specific user requirements (medium, priorities, type of information that needs to be conveyed). A framework for the generation of alphabets is proposed, and its use for the generation of a shorthand writing system is explored. We discuss the possible use of machine learning and genetic algorithms to gather inputs for generation of such alphabets and for optimization of already generated ones. The alphabets generated using such methods may be used in very different fields, from the creation of synthetic languages and constructed scripts to the creation of sensible commands for multimodal interaction through Human-Computer Interfaces, such as mouse gestures, touchpads, body gestures, eye-tracking cameras, and brain-computing Interfaces, especially in applications for elderly care and people with disabilities.
Abstract:The basic features of some of the most versatile and popular open source frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are considered and compared. Their comparative analysis was performed and conclusions were made as to the advantages and disadvantages of these platforms. The performance tests for the de facto standard MNIST data set were carried out on H2O framework for deep learning algorithms designed for CPU and GPU platforms for single-threaded and multithreaded modes of operation.