Abstract:Glaucoma is a leading cause of irreversible blindness worldwide, emphasizing the critical need for early detection and intervention. In this paper, we present DeepEyeNet, a novel and comprehensive framework for automated glaucoma detection using retinal fundus images. Our approach integrates advanced image standardization through dynamic thresholding, precise optic disc and cup segmentation via a U-Net model, and comprehensive feature extraction encompassing anatomical and texture-based features. We employ a customized ConvNeXtTiny based Convolutional Neural Network (CNN) classifier, optimized using our Adaptive Genetic Bayesian Optimization (AGBO) algorithm. This proposed AGBO algorithm balances exploration and exploitation in hyperparameter tuning, leading to significant performance improvements. Experimental results on the EyePACS-AIROGS-light-V2 dataset demonstrate that DeepEyeNet achieves a high classification accuracy of 95.84%, which was possible due to the effective optimization provided by the novel AGBO algorithm, outperforming existing methods. The integration of sophisticated image processing techniques, deep learning, and optimized hyperparameter tuning through our proposed AGBO algorithm positions DeepEyeNet as a promising tool for early glaucoma detection in clinical settings.
Abstract:We propose a new multivariate dependency measure. It is obtained by considering a Gaussian kernel based distance between the copula transform of the given d-dimensional distribution and the uniform copula and then appropriately normalizing it. The resulting measure is shown to satisfy a number of desirable properties. A nonparametric estimate is proposed for this dependency measure and its properties (finite sample as well as asymptotic) are derived. Some comparative studies of the proposed dependency measure estimate with some widely used dependency measure estimates on artificial datasets are included. A non-parametric test of independence between two or more random variables based on this measure is proposed. A comparison of the proposed test with some existing nonparametric multivariate test for independence is presented.