Abstract:Multi-platform radar networks (MPRNs) are an emerging sensing technology due to their ability to provide improved surveillance capabilities over plain monostatic and bistatic systems. The design of advanced detection, localization, and tracking algorithms for efficient fusion of information obtained through multiple receivers has attracted much attention. However, considerable challenges remain. This article provides an overview on recent unconstrained and constrained localization techniques as well as multitarget tracking (MTT) algorithms tailored to MPRNs. In particular, two data-processing methods are illustrated and explored in detail, one aimed at accomplishing localization tasks the other tracking functions. As to the former, assuming a MPRN with one transmitter and multiple receivers, the angular and range constrained estimator (ARCE) algorithm capitalizes on the knowledge of the transmitter antenna beamwidth. As to the latter, the scalable sum-product algorithm (SPA) based MTT technique is presented. Additionally, a solution to combine ARCE and SPA-based MTT is investigated in order to boost the accuracy of the overall surveillance system. Simulated experiments show the benefit of the combined algorithm in comparison with the conventional baseline SPA-based MTT and the stand-alone ARCE localization, in a 3D sensing scenario.
Abstract:A new algorithm for 3D localization in multiplatform radar networks, comprising one transmitter and multiple receivers, is proposed. To take advantage of the monostatic sensor radiation pattern features, ad-hoc constraints are imposed in the target localization process. Therefore, the localization problem is formulated as a non-convex constrained Least Squares (LS) optimization problem which is globally solved in a quasi-closed-form leveraging Karush-Kuhn-Tucker (KKT) conditions. The performance of the new algorithm is assessed in terms of Root Mean Square Error (RMSE) in comparison with the benchmark Cramer Rao Lower Bound (CRLB) and some competitors from the open literature. The results corroborate the effectiveness of the new strategy which is capable of ensuring a lower RMSE than the counterpart methodologies especially in the low Signal to Noise Ratio (SNR) regime.