Abstract:In recent years, novel view synthesis from a single image has seen significant progress thanks to the rapid advancements in 3D scene representation and image inpainting techniques. While the current approaches are able to synthesize geometrically consistent novel views, they often do not handle the view-dependent effects properly. Specifically, the highlights in their synthesized images usually appear to be glued to the surfaces, making the novel views unrealistic. To address this major problem, we make a key observation that the process of synthesizing novel views requires changing the shading of the pixels based on the novel camera, and moving them to appropriate locations. Therefore, we propose to split the view synthesis process into two independent tasks of pixel reshading and relocation. During the reshading process, we take the single image as the input and adjust its shading based on the novel camera. This reshaded image is then used as the input to an existing view synthesis method to relocate the pixels and produce the final novel view image. We propose to use a neural network to perform reshading and generate a large set of synthetic input-reshaded pairs to train our network. We demonstrate that our approach produces plausible novel view images with realistic moving highlights on a variety of real world scenes.
Abstract:In this paper, we propose an approach for view-time interpolation of stereo videos. Specifically, we build upon X-Fields that approximates an interpolatable mapping between the input coordinates and 2D RGB images using a convolutional decoder. Our main contribution is to analyze and identify the sources of the problems with using X-Fields in our application and propose novel techniques to overcome these challenges. Specifically, we observe that X-Fields struggles to implicitly interpolate the disparities for large baseline cameras. Therefore, we propose multi-plane disparities to reduce the spatial distance of the objects in the stereo views. Moreover, we propose non-uniform time coordinates to handle the non-linear and sudden motion spikes in videos. We additionally introduce several simple, but important, improvements over X-Fields. We demonstrate that our approach is able to produce better results than the state of the art, while running in near real-time rates and having low memory and storage costs.