Abstract:Sleep behaviour and in-bed movements contain rich information on the neurophysiological health of people, and have a direct link to the general well-being and quality of life. Standard clinical practices rely on polysomnography for sleep assessment; however, it is intrusive, performed in unfamiliar environments and requires trained personnel. Progress has been made on less invasive sensor technologies, such as actigraphy, but clinical validation raises concerns over their reliability and precision. Additionally, the field lacks a widely acceptable algorithm, with proposed approaches ranging from raw signal or feature thresholding to data-hungry classification models, many of which are unfamiliar to medical staff. This paper proposes an online Bayesian probabilistic framework for objective (in)activity detection and segmentation based on clinically meaningful joint kinematics, measured by a custom-made wearable sensor. Intuitive three-dimensional visualisations of kinematic timeseries were accomplished through dimension reduction based preprocessing, offering out-of-the-box framework explainability potentially useful for clinical monitoring and diagnosis. The proposed framework attained up to 99.2\% $F_1$-score and 0.96 Pearson's correlation coefficient in, respectively, the posture change detection and inactivity segmentation tasks. The work paves the way for a reliable home-based analysis of movements during sleep which would serve patient-centred longitudinal care plans.
Abstract:Sleep posture is linked to several health conditions such as nocturnal cramps and more serious musculoskeletal issues. However, in-clinic sleep assessments are often limited to vital signs (e.g. brain waves). Wearable sensors with embedded inertial measurement units have been used for sleep posture classification; nonetheless, previous works consider only few (commonly four) postures, which are inadequate for advanced clinical assessments. Moreover, posture learning algorithms typically require longitudinal data collection to function reliably, and often operate on raw inertial sensor readings unfamiliar to clinicians. This paper proposes a new framework for sleep posture classification based on a minimal set of joint angle measurements. The proposed framework is validated on a rich set of twelve postures in two experimental pipelines: computer animation to obtain synthetic postural data, and human participant pilot study using custom-made miniature wearable sensors. Through fusing raw geo-inertial sensor measurements to compute a filtered estimate of relative segment orientations across the wrist and ankle joints, the body posture can be characterised in a way comprehensible to medical experts. The proposed sleep posture learning framework offers plug-and-play posture classification by capitalising on a novel kinematic data augmentation method that requires only one training example per posture. Additionally, a new metric together with data visualisations are employed to extract meaningful insights from the postures dataset, demonstrate the added value of the data augmentation method, and explain the classification performance. The proposed framework attained promising overall accuracy as high as 100% on synthetic data and 92.7% on real data, on par with state of the art data-hungry algorithms available in the literature.
Abstract:In this paper we introduce the notion of Demand-Weighted Completeness, allowing estimation of the completeness of a knowledge base with respect to how it is used. Defining an entity by its classes, we employ usage data to predict the distribution over relations for that entity. For example, instances of person in a knowledge base may require a birth date, name and nationality to be considered complete. These predicted relation distributions enable detection of important gaps in the knowledge base, and define the required facts for unseen entities. Such characterisation of the knowledge base can also quantify how usage and completeness change over time. We demonstrate a method to measure Demand-Weighted Completeness, and show that a simple neural network model performs well at this prediction task.