Abstract:Local Transformer-based classification models have recently achieved promising results with relatively low computational costs. However, the effect of aggregating spatial global information of local Transformer-based architecture is not clear. This work investigates the outcome of applying a global attention-based module named multi-resolution overlapped attention (MOA) in the local window-based transformer after each stage. The proposed MOA employs slightly larger and overlapped patches in the key to enable neighborhood pixel information transmission, which leads to significant performance gain. In addition, we thoroughly investigate the effect of the dimension of essential architecture components through extensive experiments and discover an optimum architecture design. Extensive experimental results CIFAR-10, CIFAR-100, and ImageNet-1K datasets demonstrate that the proposed approach outperforms previous vision Transformers with a comparatively fewer number of parameters.
Abstract:Colonoscopy is a procedure to detect colorectal polyps which are the primary cause for developing colorectal cancer. However, polyp segmentation is a challenging task due to the diverse shape, size, color, and texture of polyps, shuttle difference between polyp and its background, as well as low contrast of the colonoscopic images. To address these challenges, we propose a feature enhancement network for accurate polyp segmentation in colonoscopy images. Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM). Furthermore, instead of directly adding encoder features to the respective decoder layer, we introduce an Adaptive Global Context Module (AGCM), which focuses only on the encoder's significant and hard fine-grained features. The integration of these two modules improves the quality of features layer by layer, which in turn enhances the final feature representation. The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.