Slovak University of Technology in Bratislava, Bratislava, Slovakia
Abstract:This study details our approach for the CASE 2024 Shared Task on Climate Activism Stance and Hate Event Detection, focusing on Hate Speech Detection, Hate Speech Target Identification, and Stance Detection as classification challenges. We explored the capability of Large Language Models (LLMs), particularly GPT-4, in zero- or few-shot settings enhanced by retrieval augmentation and re-ranking for Tweet classification. Our goal was to determine if LLMs could match or surpass traditional methods in this context. We conducted an ablation study with LLaMA for comparison, and our results indicate that our models significantly outperformed the baselines, securing second place in the Target Detection task. The code for our submission is available at https://github.com/NaiveNeuron/bryndza-case-2024
Abstract:In this study we demonstrate the viability of deploying BERT-style models to AWS Lambda in a production environment. Since the freely available pre-trained models are too large to be deployed in this way, we utilize knowledge distillation and fine-tune the models on proprietary datasets for two real-world tasks: sentiment analysis and semantic textual similarity. As a result, we obtain models that are tuned for a specific domain and deployable in the serverless environment. The subsequent performance analysis shows that this solution does not only report latency levels acceptable for production use but that it is also a cost-effective alternative to small-to-medium size deployments of BERT models, all without any infrastructure overhead.
Abstract:Growing amount of comments make online discussions difficult to moderate by human moderators only. Antisocial behavior is a common occurrence that often discourages other users from participating in discussion. We propose a neural network based method that partially automates the moderation process. It consists of two steps. First, we detect inappropriate comments for moderators to see. Second, we highlight inappropriate parts within these comments to make the moderation faster. We evaluated our method on data from a major Slovak news discussion platform.