Abstract:Thermal management of power electronics and Electronic Control Units is crucial in times of increasing power densities and limited assembly space. Electric and autonomous vehicles are a prominent application field. Thermal Interface Materials are used to transfer heat from a semiconductor to a heatsink. They are applied along a dispense path onto the semiconductor and spread over its entire surface once the heatsink is joined. To plan this application path, design engineers typically perform an iterative trial-and-error procedure of elaborate simulations and manual experiments. We propose a fully automated optimization approach, which clearly outperforms the current manual path planning and respects all relevant manufacturing constraints. An optimum dispense path increases the reliability of the thermal interface and makes the manufacturing more sustainable by reducing material waste. We show results on multiple real products from automotive series production, including an experimental validation on actual series manufacturing equipment.
Abstract:Thermal Interface Materials (TIMs) are widely used in electronic packaging. Increasing power density and limited assembly space pose high demands on thermal management. Large cooling surfaces need to be covered efficiently. When joining the heatsink, previously dispensed TIM spreads over the cooling surface. Recommendations on the dispensing pattern exist only for simple surface geometries such as rectangles. For more complex geometries, Computational Fluid Dynamics (CFD) simulations are used in combination with manual experiments. While CFD simulations offer a high accuracy, they involve simulation experts and are rather expensive to set up. We propose a lightweight heuristic to model the spreading behavior of TIM. We further speed up the calculation by training an Artificial Neural Network (ANN) on data from this model. This offers rapid computation times and further supplies gradient information. This ANN can not only be used to aid manual pattern design of TIM, but also enables an automated pattern optimization. We compare this approach against the state-of-the-art and use real product samples for validation.
Abstract:Electronic control units (ECUs) are essential for many automobile components, e.g. engine, anti-lock braking system (ABS), steering and airbags. For some products, the 3D pose of each single ECU needs to be determined during series production. Deep learning approaches can not easily be applied to this problem, because labeled training data is not available in sufficient numbers. Thus, we train state-of-the-art artificial neural networks (ANNs) on purely synthetic training data, which is automatically created from a single CAD file. By randomizing parameters during rendering of training images, we enable inference on RGB images of a real sample part. In contrast to classic image processing approaches, this data-driven approach poses only few requirements regarding the measurement setup and transfers to related use cases with little development effort.