Abstract:Algorithms with predictions is a recent framework for decision-making under uncertainty that leverages the power of machine-learned predictions without making any assumption about their quality. The goal in this framework is for algorithms to achieve an improved performance when the predictions are accurate while maintaining acceptable guarantees when the predictions are erroneous. A serious concern with algorithms that use predictions is that these predictions can be biased and, as a result, cause the algorithm to make decisions that are deemed unfair. We show that this concern manifests itself in the classical secretary problem in the learning-augmented setting -- the state-of-the-art algorithm can have zero probability of accepting the best candidate, which we deem unfair, despite promising to accept a candidate whose expected value is at least $\max\{\Omega (1) , 1 - O(\epsilon)\}$ times the optimal value, where $\epsilon$ is the prediction error. We show how to preserve this promise while also guaranteeing to accept the best candidate with probability $\Omega(1)$. Our algorithm and analysis are based on a new "pegging" idea that diverges from existing works and simplifies/unifies some of their results. Finally, we extend to the $k$-secretary problem and complement our theoretical analysis with experiments.
Abstract:We study the classic problem of correlation clustering in dynamic node streams. In this setting, nodes are either added or randomly deleted over time, and each node pair is connected by a positive or negative edge. The objective is to continuously find a partition which minimizes the sum of positive edges crossing clusters and negative edges within clusters. We present an algorithm that maintains an $O(1)$-approximation with $O$(polylog $n$) amortized update time. Prior to our work, Behnezhad, Charikar, Ma, and L. Tan achieved a $5$-approximation with $O(1)$ expected update time in edge streams which translates in node streams to an $O(D)$-update time where $D$ is the maximum possible degree. Finally we complement our theoretical analysis with experiments on real world data.
Abstract:The extension of classical online algorithms when provided with predictions is a new and active research area. In this paper, we extend the primal-dual method for online algorithms in order to incorporate predictions that advise the online algorithm about the next action to take. We use this framework to obtain novel algorithms for a variety of online covering problems. We compare our algorithms to the cost of the true and predicted offline optimal solutions and show that these algorithms outperform any online algorithm when the prediction is accurate while maintaining good guarantees when the prediction is misleading.
Abstract:As power management has become a primary concern in modern data centers, computing resources are being scaled dynamically to minimize energy consumption. We initiate the study of a variant of the classic online speed scaling problem, in which machine learning predictions about the future can be integrated naturally. Inspired by recent work on learning-augmented online algorithms, we propose an algorithm which incorporates predictions in a black-box manner and outperforms any online algorithm if the accuracy is high, yet maintains provable guarantees if the prediction is very inaccurate. We provide both theoretical and experimental evidence to support our claims.